EAGER: Graph-Based Theoretical Models and Mining Algorithms for Bioinformatics Data Analysis

EAGER:用于生物信息学数据分析的基于图的理论模型和挖掘算法

基本信息

  • 批准号:
    1049864
  • 负责人:
  • 金额:
    $ 15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-09-01 至 2012-08-31
  • 项目状态:
    已结题

项目摘要

EAGER: Graph-based Theoretical Models and Mining Algorithms for Bioinformatics Data Analysis Project SummaryGraphs show up in a surprisingly diverse set of disciplines, ranging from computer networks to sociology, biology, ecology and many more. In recent years, huge amounts of data are generated and ultimately represented in graph format in the bioinformatics applications. Some are stored as a single large graph such as a protein-protein interaction network, while others are stored as a set of graph objects in a graph database such as chemical compounds in drug design and protein 2D/3D structures in bioinformatics. The main goal of this proposal is to develop novel graph-based theoretical models and algorithms to analyze bioinformatics data sets represented as either a single large graph or a graph database, focusing on the (1) development of efficient structure pattern discovery methods in graph databases based on graph decomposition and compression, and (2) development of mining algorithms for large scale-free network graphs, focusing on developing mixture model and statistical inference of hierarchical structure and missing link prediction in complex network. These algorithms will be validated by analyzing data sets arising in bioinformatics research. The proposed research will advance the understanding of bioinformatics and data mining algorithm research and development in graph data sets. It will also expand the application scope and push new frontiers for graph theory, bioinformatics and data mining. This research work is considered ?high risk high payoff? because it needs to develop novel theoretical graph-model and algorithms, radically different from the dominant random graph theory models and algorithmsIntellectual merit: The techniques and methods to be developed in this proposal build on state-of-the-art methods in bioinformatics, graph theory, data mining and database management. The research will result in improved understanding of the issues involved in designing efficient graph-based models, algorithms and methods in scientific data sets. The proposed project will design and develop a wide-range of novel data analysis algorithms and methods including structure pattern matching and discovery, and mining large scale-free network graphs. Broader impacts: The proposal will address a broad range of problems in the data analysis of scientific application domains such as bioinformatics, drug design, molecular biology, etc. Both the graph-based models and algorithms developed from this research are central to the computer science, and are generalizable and will be made publicly available for use in other domains, including personal or social contacts in sociology and epidemiology, author-co-citations in information science, the Internet and the World Wide Web in computer science and information technology. Research outcomes from this proposal can lead to more efficient and effective modeling and simulation mechanism of the biological network and advanced mathematical capabilities that are applicable through other science and engineering domain. The PI and Co-PI have a strong commitment to the integration of research and education, promotion of diversity, strong industrial partnership and broad dissemination of research results. The proposed research area lends itself to raising the scientific curiosity of students at many levels. Students will obtain significant exposure to the latest research. Both the research and education plans of the proposal are highly interdisciplinary, engaging students and faculty from various research areas and drawing from work on numerous fields of study. In particular, the plans serve to highlight the benefits of synthesizing bioinformatics, graph theory and data mining in creating the next generation of graph-based models, algorithms and tools for bioinformatics research. Armed with these models, algorithms and tools, bioinformatics researchers will discover more meaningful and pertinent knowledge/patterns and enable them to have a better understanding and interpretation of the data sets collected in their investigation. Students will gain an appreciation for the ability to understand, analyze and mine the growing range of bioinformatics data sets.
EAGER:基于图的生物信息学数据分析理论模型与挖掘算法 项目摘要图表出现在一系列令人惊讶的学科中,从计算机网络到社会学,生物学,生态学等等。近年来,在生物信息学应用中产生了大量的数据,并最终以图形格式表示。有些存储为单个大图,例如蛋白质-蛋白质相互作用网络,而另一些则存储为图数据库中的一组图对象,例如药物设计中的化合物和生物信息学中的蛋白质2D/3D结构。该提案的主要目标是开发新的基于图的理论模型和算法,以分析表示为单个大型图或图数据库的生物信息学数据集,重点是(1)开发基于图分解和压缩的图数据库中的有效结构模式发现方法,以及(2)开发大型无标度网络图的挖掘算法,重点研究了复杂网络的混合模型、层次结构的统计推断和缺失链预测。这些算法将通过分析生物信息学研究中产生的数据集进行验证。该研究将促进生物信息学的理解和数据挖掘算法的研究与开发。它还将扩大应用范围,推动图论,生物信息学和数据挖掘的新前沿。这项研究工作被认为是?高风险高回报?因为它需要开发新的理论图模型和算法,从根本上不同于占主导地位的随机图论模型和算法。智力优点:本提案中要开发的技术和方法建立在生物信息学、图论、数据挖掘和数据库管理中的最先进方法之上。这项研究将导致更好地理解设计有效的基于图形的模型,算法和方法在科学数据集所涉及的问题。该项目将设计和开发一系列新颖的数据分析算法和方法,包括结构模式匹配和发现,以及挖掘大型无标度网络图。更广泛的影响:该提案将解决科学应用领域(如生物信息学,药物设计,分子生物学等)数据分析中的广泛问题。这项研究开发的基于图形的模型和算法对计算机科学至关重要,并且是可推广的,将公开用于其他领域,包括社会学和流行病学中的个人或社会联系,作者共同引文信息科学,互联网和万维网在计算机科学和信息技术。从这个建议的研究成果可以导致更高效和有效的建模和仿真机制的生物网络和先进的数学能力,适用于通过其他科学和工程领域。PI和Co-PI坚定地致力于研究和教育的整合,促进多样性,强大的工业伙伴关系和广泛传播研究成果。拟议的研究领域有助于提高学生在多个层面的科学好奇心。学生将获得显着接触到最新的研究。该提案的研究和教育计划都是高度跨学科的,吸引了来自各个研究领域的学生和教师,并借鉴了许多研究领域的工作。特别是,这些计划突出了综合生物信息学、图论和数据挖掘在为生物信息学研究创建下一代基于图的模型、算法和工具方面的好处。 有了这些模型,算法和工具,生物信息学研究人员将发现更有意义和相关的知识/模式,并使他们能够更好地理解和解释在调查中收集的数据集。学生将获得理解,分析和挖掘不断增长的生物信息学数据集的能力。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xiaohua Hu其他文献

Foundation of Data Mining and Knowledge Discovery
数据挖掘和知识发现基础
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    T.Y.Lin;S.Ohsuga;C.J.Liau;Xiaohua Hu;S.Tsumoto
  • 通讯作者:
    S.Tsumoto
A Joint Graphical Model for Inferring Gene Networks Across Multiple Subpopulations and Data Types
用于推断跨多个亚群和数据类型的基因网络的联合图形模型
  • DOI:
    10.1109/tcyb.2019.2952711
  • 发表时间:
    2019-11
  • 期刊:
  • 影响因子:
    11.8
  • 作者:
    Xiao-Fei Zhang;Le Ou-Yang;Ting Yan;Xiaohua Hu;Hong Yan
  • 通讯作者:
    Hong Yan
Micro–macro finite element modeling method for rub response in abradable coating materials
可磨耗涂层材料摩擦响应的微观-宏观有限元建模方法
  • DOI:
    10.1007/s10853-023-09327-0
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    4.5
  • 作者:
    Jiahao Cheng;Xiaohua Hu;William Joost;Xin Sun
  • 通讯作者:
    Xin Sun
A Macro-Micro Approach for Identifying Crystal Plasticity Parameters for Necking and Failure in Nickel-Based Alloy Haynes 282
用于识别镍基合金 Haynes 282 中颈缩和失效的晶体塑性参数的宏观-微观方法
The First Workshop on Personalized Generative AI @ CIKM 2023: Personalization Meets Large Language Models
第一届个性化生成人工智能研讨会@CIKM 2023:个性化遇见大型语言模型

Xiaohua Hu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xiaohua Hu', 18)}}的其他基金

III: Small: Collaborative Research: A novel paradigm for detecting complex anomalous patterns in multi-modal, heterogeneous, and high-dimensional multi-source data sets
III:小型:协作研究:一种检测多模态、异构和高维多源数据集中复杂异常模式的新范式
  • 批准号:
    1815256
  • 财政年份:
    2018
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
I/UCRC Phase II Renewal: Center for Visual and Decision Informatics (CVDI)
I/UCRC 第二阶段更新:视觉与决策信息学中心 (CVDI)
  • 批准号:
    1650431
  • 财政年份:
    2017
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
EAGER: A novel set of computational methods for mining nonlinear and high-order relationships
EAGER:一套用于挖掘非线性和高阶关系的新颖计算方法
  • 批准号:
    1744661
  • 财政年份:
    2017
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Travel Support for the 2016 IEEE International Conference on Big Data (IEEE Big Data 2016)
2016 年 IEEE 大数据国际会议 (IEEE Big Data 2016) 差旅支持
  • 批准号:
    1643224
  • 财政年份:
    2016
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Student Support for Participation in the 2016 IEEE International Conference on Bioinformatics and Biomedicine (IEEE BIBM 2016)
学生支持参加 2016 年 IEEE 国际生物信息学和生物医学会议 (IEEE BIBM 2016)
  • 批准号:
    1645131
  • 财政年份:
    2016
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Student Travel Fellowships for the 2015 IEEE International Conference on Big Data (IEEE Big Data October 29 -November 1, 2015)
2015年IEEE大数据国际会议学生旅行奖学金(IEEE大数据2015年10月29日-11月1日)
  • 批准号:
    1545641
  • 财政年份:
    2015
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Travel Awards for 2014 IEEE International Conference on Bioinformatics and Biomedicine (BIBM-2014)
2014 年 IEEE 国际生物信息学和生物医学会议 (BIBM-2014) 旅行奖
  • 批准号:
    1445149
  • 财政年份:
    2014
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
I/UCRC FRP: Collaborative Research: Fundamental Research in Visualization-based Gap Analysis and Link Prediction
I/UCRC FRP:合作研究:基于可视化的差距分析和链路预测的基础研究
  • 批准号:
    1332024
  • 财政年份:
    2013
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
I/UCRC Phase I: Center for the Visual and Decision Informatics (CVDI)
I/UCRC 第一阶段:视觉与决策信息学中心 (CVDI)
  • 批准号:
    1160960
  • 财政年份:
    2012
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
CIF:Medium:Collaborative Research:Integrating and Mining Bio-Data from Multi Sources in Biological Networks
CIF:中:协作研究:生物网络中多源生物数据的集成和挖掘
  • 批准号:
    0905291
  • 财政年份:
    2009
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant

相似国自然基金

基于Graph-PINN的层结稳定度参数化建模与沙尘跨介质耦合传输模拟研
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
平面三角剖分flip graph的强凸性研究
  • 批准号:
    12301432
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
基于graph的多对比度磁共振图像重建方法
  • 批准号:
    61901188
  • 批准年份:
    2019
  • 资助金额:
    24.5 万元
  • 项目类别:
    青年科学基金项目
基于de bruijn graph梳理的宏基因组拼接算法开发
  • 批准号:
    61771009
  • 批准年份:
    2017
  • 资助金额:
    50.0 万元
  • 项目类别:
    面上项目
基于Graph和ISA的红外目标分割与识别方法研究
  • 批准号:
    61101246
  • 批准年份:
    2011
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
中国Web Graph的挖掘与应用研究
  • 批准号:
    60473122
  • 批准年份:
    2004
  • 资助金额:
    23.0 万元
  • 项目类别:
    面上项目

相似海外基金

Heterogeneous Graph Neural Network based Federated Mobile Crowdsensing
基于异构图神经网络的联合移动群智感知
  • 批准号:
    23K24829
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
CAREER: Integrating Graph Theory based Networks with Machine Learning for Enhanced Process Synthesis and Design
职业:将基于图论的网络与机器学习相集成以增强流程综合和设计
  • 批准号:
    2339588
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
CSR: Small: Processing-in-Memory enabled Manycore Systems to Accelerate Graph Neural Network-based Data Analytics
CSR:小型:启用内存处理的众核系统可加速基于图神经网络的数据分析
  • 批准号:
    2308530
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
SHINE: Understanding the Relationships of Photospheric Vector Magnetic Field Parameters in Solar Flare Occurrences using Graph-based Machine Learning Models
SHINE:使用基于图的机器学习模型了解太阳耀斑发生时光球矢量磁场参数的关系
  • 批准号:
    2301397
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Development and integration of organic solar cell and organic transistor materials using graph-based machine learning
使用基于图形的机器学习开发和集成有机太阳能电池和有机晶体管材料
  • 批准号:
    23H02064
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
A Graph-based Methodology for Modeling the Nucleation of Weak Electrolytes
基于图形的弱电解质成核建模方法
  • 批准号:
    2317787
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Taking the structure of proteins into account: predicting if infections are resistant to B-lactam antibiotics using graph-based convolutional neural n
考虑蛋白质的结构:使用基于图的卷积神经网络预测感染是否对 B-内酰胺抗生素具有耐药性
  • 批准号:
    2886022
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Studentship
Automatic Methods for Knowledge Graph Construction using Ontology-based Context Management
使用基于本体的上下文管理的知识图谱自动构建方法
  • 批准号:
    23H03462
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
SCH: Graph-based Spatial Transcriptomics Computational Methods in Kidney Diseases
SCH:肾脏疾病中基于图的空间转录组学计算方法
  • 批准号:
    10816929
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
Realization of Graph Neural SLAM, a next-generation SLAM technology based on knowledge-intensive maps
基于知识密集型地图的下一代SLAM技术Graph Neural SLAM的实现
  • 批准号:
    23K11270
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了