Taming Complexity of Mesoscale Dynamics with Low-Order Models

用低阶模型控制中尺度动力学的复杂性

基本信息

  • 批准号:
    1050588
  • 负责人:
  • 金额:
    $ 42.97万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-01-15 至 2015-12-31
  • 项目状态:
    已结题

项目摘要

This research makes an attempt at developing low-order models (LOMs) that inherit fundamental conservation properties of the fluid dynamical equations, thereby exhibiting sound physical behavior. The new LOMs of 3D flows incorporate different physical mechanisms to enhance our understanding of convective phenomena observed in marine boundary layers (MBLs). Consideration in convective MBLs will address the geometry (2D rolls versus 3D cells), circulation direction (open vs. closed cells), and unique transitional convective patterns such as actiniae cloud formations. Physical mechanisms incorporated into the LOMs are a) heat flux, b) large-scale vertical motion, c) cyclonic vs. anticyclonic background vorticity, and d) vertical shear in the horizontal wind.Additionally, time series originating from physically sound nonlinear LOMs will be explored as a valuable complement to those generated by the more traditional (stochastic) models. The expectation is that the former will become more useful in various studies of atmospheric dynamics than commonly used all-purpose ones borrowed from standard time series analysis.Intellectual merit The concepts and methods developed in this study will enhance our understanding of geophysical fluid dynamics phenomena, and in particular mesoscale convection in MBLs. Success in this project will also promote a greater insight into the nature of the interacting roles of statistics and nonlinear dynamics in atmospheric studies.Broader impacts The research may have broader impacts on many areas within the atmospheric and related sciences since it brings into focus a viable tool (other than numerical simulation) for addressing physical phenomena described by nonlinear partial differential equations. This research also addresses in many ways an emerging new field of science, commonly referred as "complexity".
本研究试图发展低阶模型(LOM),继承流体动力学方程的基本守恒性质,从而表现出良好的物理行为。 三维流动的新的LOMs结合不同的物理机制,以提高我们对海洋边界层(MBLs)中观察到的对流现象的理解。 对流MBL的考虑将解决几何形状(2D卷与3D细胞),环流方向(开放与封闭的细胞),和独特的过渡对流模式,如猕猴桃云的形成。 LOMs中包含的物理机制包括:a)热通量,B)大尺度垂直运动,c)气旋与反气旋背景涡度,d)水平风中的垂直切变。此外,将探索源自物理上合理的非线性LOMs的时间序列,作为对更传统(随机)模式生成的时间序列的有价值的补充。 期望的是,前者将成为更有用的各种研究的大气动力学比常用的通用的借用标准的时间序列analysis.Intellectual优点-在这项研究中开发的概念和方法将提高我们的理解地球物理流体动力学现象,特别是中尺度对流MBLs。 该项目的成功也将促进对大气研究中统计学和非线性动力学相互作用的性质的更深入的了解。更广泛的影响该研究可能对大气和相关科学的许多领域产生更广泛的影响,因为它使人们关注一个可行的工具(而不是数值模拟)来解决非线性偏微分方程描述的物理现象。 这项研究还在许多方面涉及一个新兴的科学领域,通常被称为“复杂性”。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alexander Gluhovsky其他文献

Alexander Gluhovsky的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alexander Gluhovsky', 18)}}的其他基金

Modeling Mesoscale Circulations by Coupled Nonlinear Systems
通过耦合非线性系统模拟中尺度环流
  • 批准号:
    0413382
  • 财政年份:
    2004
  • 资助金额:
    $ 42.97万
  • 项目类别:
    Standard Grant
Modeling Mesoscale Convection by Coupled Nonlinear Systems
通过耦合非线性系统模拟中尺度对流
  • 批准号:
    9909009
  • 财政年份:
    2000
  • 资助金额:
    $ 42.97万
  • 项目类别:
    Continuing Grant
Modeling Mesoscale Convection by Coupled Nonlinear Systems
通过耦合非线性系统模拟中尺度对流
  • 批准号:
    9523572
  • 财政年份:
    1995
  • 资助金额:
    $ 42.97万
  • 项目类别:
    Continuing Grant

相似海外基金

Conference: 17th International Conference on Computability, Complexity and Randomness (CCR 2024)
会议:第十七届可计算性、复杂性和随机性国际会议(CCR 2024)
  • 批准号:
    2404023
  • 财政年份:
    2024
  • 资助金额:
    $ 42.97万
  • 项目类别:
    Standard Grant
Addressing the complexity of future power system dynamic behaviour
解决未来电力系统动态行为的复杂性
  • 批准号:
    MR/S034420/2
  • 财政年份:
    2024
  • 资助金额:
    $ 42.97万
  • 项目类别:
    Fellowship
Addressing the complexity of future power system dynamic behaviour
解决未来电力系统动态行为的复杂性
  • 批准号:
    MR/Y00390X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 42.97万
  • 项目类别:
    Fellowship
CAREER: Complexity Theory of Quantum States: A Novel Approach for Characterizing Quantum Computer Science
职业:量子态复杂性理论:表征量子计算机科学的新方法
  • 批准号:
    2339116
  • 财政年份:
    2024
  • 资助金额:
    $ 42.97万
  • 项目类别:
    Continuing Grant
Low-complexity配列の相分離液滴の分光学的解析法の開発
低复杂度排列相分离液滴光谱分析方法的发展
  • 批准号:
    23K23857
  • 财政年份:
    2024
  • 资助金额:
    $ 42.97万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Building Molecular Complexity Through Enzyme-Enabled Synthesis
通过酶合成构建分子复杂性
  • 批准号:
    DE240100502
  • 财政年份:
    2024
  • 资助金额:
    $ 42.97万
  • 项目类别:
    Discovery Early Career Researcher Award
Data Complexity and Uncertainty-Resilient Deep Variational Learning
数据复杂性和不确定性弹性深度变分​​学习
  • 批准号:
    DP240102050
  • 财政年份:
    2024
  • 资助金额:
    $ 42.97万
  • 项目类别:
    Discovery Projects
Taming the complexity of the law: modelling and visualisation of dynamically interacting legal systems [RENEWAL].
驾驭法律的复杂性:动态交互的法律系统的建模和可视化[RENEWAL]。
  • 批准号:
    MR/X023028/1
  • 财政年份:
    2024
  • 资助金额:
    $ 42.97万
  • 项目类别:
    Fellowship
Career: The Complexity pf Quantum Tasks
职业:量子任务的复杂性
  • 批准号:
    2339711
  • 财政年份:
    2024
  • 资助金额:
    $ 42.97万
  • 项目类别:
    Continuing Grant
22-BBSRC/NSF-BIO Building synthetic regulatory units to understand the complexity of mammalian gene expression
22-BBSRC/NSF-BIO 构建合成调控单元以了解哺乳动物基因表达的复杂性
  • 批准号:
    BB/Y008898/1
  • 财政年份:
    2024
  • 资助金额:
    $ 42.97万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了