Genome-Wide Analysis of the Salmonella RpoN Regulon

沙门氏菌 RpoN 调节子的全基因组分析

基本信息

项目摘要

Intellectual Merit. Understanding how bacteria regulate the expression of their genes is critical for the manipulation of bacteria that have industrial, environmental or agricultural uses. The first step in the regulation of a gene is for RNA polymerase to recognize the promoter, the site of initiation of RNA synthesis. In bacteria, this initial step requires a so-called sigma factor that binds to RNA polymerase and directs it to the promoter. Bacteria use a primary sigma factor for transcription of most their genes, but generally possess one or more alternative sigma factors required for expression of specific genes. RpoN is one such alternative sigma factor that is required for the transcription of genes involved in a variety of microbial processes that are important in agriculture, bioenergy production, bioremediation, and host-microbe interactions. The ability to accurately predict promoters recognized by RpoN-RNA polymerase holoenzyme from genome sequences is critical for dissecting the regulatory networks that control these important microbial processes. This research program will provide crucial information on core and contextual DNA sequences that are important for recognition by RpoN-RNA polymerase holoenzyme and promoter activity in the model bacterium Salmonella enterica serovar Typhimurium. The project will also expand understanding of RpoN function in new ways by examining the roles of sites within genes (i.e., intragenic sites) that are recognized by RpoN-RNA polymerase holoenzyme. Specifically, these intragenic binding sites will be examined for their potential to i) function as internal promoters for downstream genes; ii) stimulate the activity of nearby RpoN-dependent promoters; or iii) enhance the levels of RpoN-RNA polymerase holoenzyme inside the bacterium. In addition, the research will explore a possible link between cellular concentrations of potassium (which are important for the bacterium to respond to certain changes in the surrounding environment) and the regulation of specific RpoN-dependent genes. Since many of the RpoN-dependent genes in S. enterica serovar Typhimurium are involved either in nitrogen uptake or the transport of specific sugars, such a link could provide a mechanism for regulating nitrogen and carbon metabolism in response to those specific changes in the environment. The information gained from the research will shed new light on the function of RpoN-RNA polymerase holoenzyme and how S. enterica serovar Typhimurium integrates environmental signals into regulatory networks that govern its activity. Such new information can be applied to other bacteria that have industrial, environmental or agricultural significance.Broader Impacts. The project will integrate research and education by involving undergraduate and graduate students in the research, and it will provide training and opportunities for the professional development of the students involved in the project. In addition, high school teachers will participate in the research during the summer. Participating high school teachers will be able to integrate the new, cutting-edge methods they learn into the laboratory classes they teach, which will help inspire their students to consider careers in biological research. Students from underrepresented groups will be involved with the project and in addition to receiving mentoring in research, they will also receive social support and opportunities for professional development through campus graduate student organizations such as the Scholars for Diversity in STEM Disciplines. Graduate students involved with the project will help mentor undergraduates in the laboratory and receive formal training for this through an Entering Mentoring program. This experience will foster the professional development of the graduate mentors and enhance the quality of the research experience for the undergraduate protégés. Students will present their findings at regional and national conferences, providing them with networking opportunities, which will assist them in their careers. The project will also contribute to research infrastructure by providing researchers access to software developed to predict RpoN-type promoters from genome sequences.
知识价值。了解细菌如何调节其基因的表达对于操纵具有工业、环境或农业用途的细菌至关重要。基因调控的第一步是RNA聚合酶识别启动子,即RNA合成的起始位点。在细菌中,最初的步骤需要一个所谓的sigma因子,它与RNA聚合酶结合,并将其引导到启动子处。细菌使用一个主要的西格玛因子来转录大多数基因,但通常具有一个或多个表达特定基因所需的备选西格玛因子。RpoN是参与多种微生物过程的基因转录所需的替代sigma因子之一,这些微生物过程在农业、生物能源生产、生物修复和宿主-微生物相互作用中都很重要。从基因组序列中准确预测rpo - rna聚合酶全酶识别的启动子的能力对于解剖控制这些重要微生物过程的调控网络至关重要。该研究计划将提供核心和背景DNA序列的重要信息,这些信息对模式细菌肠炎沙门氏菌血清型鼠伤寒沙门氏菌的rpo - rna聚合酶全酶和启动子活性的识别至关重要。该项目还将通过检查rpo - rna聚合酶全酶识别的基因内位点(即基因内位点)的作用,以新的方式扩大对rpo功能的理解。具体来说,这些基因内结合位点将被检查它们的潜力:1)作为下游基因的内部启动子;ii)刺激附近rpo依赖启动子的活性;或iii)提高细菌内部rpo - rna聚合酶全酶的水平。此外,该研究将探索细胞钾浓度(这对细菌对周围环境的某些变化作出反应很重要)与特定rpo依赖基因的调节之间的可能联系。由于肠炎沙门氏菌血清型鼠伤寒菌中的许多rpo依赖基因参与氮的摄取或特定糖的运输,因此这种联系可能提供一种机制来调节氮和碳的代谢,以响应这些特定的环境变化。从这项研究中获得的信息将为rpo - rna聚合酶全酶的功能以及肠炎沙门氏菌血清型鼠伤寒沙门氏菌如何将环境信号整合到控制其活性的调节网络中提供新的思路。这些新信息可以应用于其他具有工业、环境或农业意义的细菌。更广泛的影响。该计划将整合研究与教育,让本科生和研究生参与研究,并为参与计划的学生提供专业发展的训练和机会。此外,高中教师将在暑假期间参与研究。参与该项目的高中教师将能够将他们学到的最前沿的新方法整合到实验课中,这将有助于激励学生考虑从事生物学研究。来自代表性不足群体的学生将参与该项目,除了在研究中获得指导外,他们还将通过校园研究生组织(如STEM学科多样性学者组织)获得社会支持和专业发展机会。参与该项目的研究生将帮助指导实验室的本科生,并通过进入指导计划接受正式的培训。这种经验将促进研究生导师的专业发展,并提高本科生的研究经验的质量。学生将在地区和国家会议上展示他们的研究成果,为他们提供交流机会,这将有助于他们的职业发展。该项目还将为研究人员提供从基因组序列中预测rpo型启动子的软件,从而为研究基础设施做出贡献。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Timothy Hoover其他文献

Timothy Hoover的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Timothy Hoover', 18)}}的其他基金

Collaborative RUI: Regulation of Flagellar Biogenesis in H. pylori
协作 RUI:幽门螺杆菌鞭毛生物发生的调节
  • 批准号:
    1244242
  • 财政年份:
    2013
  • 资助金额:
    $ 60.5万
  • 项目类别:
    Standard Grant
REU Site: Research in Prokaryotic Biology
REU 网站:原核生物学研究
  • 批准号:
    0453353
  • 财政年份:
    2005
  • 资助金额:
    $ 60.5万
  • 项目类别:
    Standard Grant
Microbial Genome Sequencing: Genome Sequencing of the Budding Bacterium Hyphomonas Neptunium
微生物基因组测序:出芽细菌 Hyphomonas Neptunium 的基因组测序
  • 批准号:
    0237224
  • 财政年份:
    2002
  • 资助金额:
    $ 60.5万
  • 项目类别:
    Standard Grant
Transcriptional Activation with Sigma54-Holoenzyme
使用 Sigma54-Holoenzyme 进行转录激活
  • 批准号:
    9974558
  • 财政年份:
    1999
  • 资助金额:
    $ 60.5万
  • 项目类别:
    Continuing Grant
Transciptional Activation by Rhizobium meliloti DCTD
苜蓿根瘤菌 DCTD 的转录激活
  • 批准号:
    9630454
  • 财政年份:
    1996
  • 资助金额:
    $ 60.5万
  • 项目类别:
    Continuing Grant
Transcriptional Activation by Rhizobium meliloti DCTD
苜蓿根瘤菌 DCTD 的转录激活
  • 批准号:
    9506333
  • 财政年份:
    1995
  • 资助金额:
    $ 60.5万
  • 项目类别:
    Standard Grant

相似国自然基金

CFHTLS-Wide和CFHTLS-Stripe82观测的弱引力透镜星系团巡天
  • 批准号:
    11103011
  • 批准年份:
    2011
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Genome-Wide Association Analysis of salt-sensitive hypertension in elderly population
老年人盐敏感性高血压的全基因组关联分析
  • 批准号:
    495420
  • 财政年份:
    2023
  • 资助金额:
    $ 60.5万
  • 项目类别:
DATA ANALYTICS, STATISTICAL AND BIOINFORMATIC ANALYSIS AND TOOL DEVELOPMENT, Genome wide association studies (GWAS)
数据分析、统计和生物信息分析及工具开发、全基因组关联研究 (GWAS)
  • 批准号:
    10976182
  • 财政年份:
    2023
  • 资助金额:
    $ 60.5万
  • 项目类别:
MAGIC tools for genome-wide mosaic analysis with existing Drosophila resources (Equipment Supplement 2023)
利用现有果蝇资源进行全基因组嵌合分析的 MAGIC 工具(设备补充资料 2023)
  • 批准号:
    10808546
  • 财政年份:
    2023
  • 资助金额:
    $ 60.5万
  • 项目类别:
A genome-wide genealogical framework for statistical and population genetic analysis
用于统计和群体遗传分析的全基因组谱系框架
  • 批准号:
    10658562
  • 财政年份:
    2023
  • 资助金额:
    $ 60.5万
  • 项目类别:
Genome-wide Analysis of Anticoagulant Heparin Sulfate for Bioengineering Heparan
用于生物工程类乙酰肝素的抗凝剂硫酸肝素的全基因组分析
  • 批准号:
    10742641
  • 财政年份:
    2023
  • 资助金额:
    $ 60.5万
  • 项目类别:
Genome-wide analysis of the biogenesis and function of surface structures involved in interbacterial interactions
对参与细菌间相互作用的表面结构的生物发生和功能进行全基因组分析
  • 批准号:
    RGPIN-2019-06044
  • 财政年份:
    2022
  • 资助金额:
    $ 60.5万
  • 项目类别:
    Discovery Grants Program - Individual
Genome-wide analysis of the polyamine-mediated antibiotic resistance in S. aureus
金黄色葡萄球菌多胺介导的抗生素耐药性的全基因组分析
  • 批准号:
    573803-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 60.5万
  • 项目类别:
    University Undergraduate Student Research Awards
Genome-wide analysis of alternative splicing during progressive drought in Arabidopsis thaliana
拟南芥渐进干旱期间选择性剪接的全基因组分析
  • 批准号:
    580822-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 60.5万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Genome wide analysis of Cryptobia salmositica
Cryptobia salmositica 的全基因组分析
  • 批准号:
    DDG-2020-00004
  • 财政年份:
    2022
  • 资助金额:
    $ 60.5万
  • 项目类别:
    Discovery Development Grant
MAGIC tools for genome-wide mosaic analysis with existing Drosophila resources
利用现有果蝇资源进行全基因组嵌合分析的 MAGIC 工具
  • 批准号:
    10334841
  • 财政年份:
    2022
  • 资助金额:
    $ 60.5万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了