CAREER: Bright Femtosecond x- and Gamma-Ray Pulse Production Using Ultra-Intense Lasers

职业:使用超强激光产生明亮的飞秒 x 射线和伽马射线脉冲

基本信息

项目摘要

The research objective of this project is to measure and model the properties of radiation, and the complex electron dynamics, resulting from the electromagnetic interaction of electron beams generated in high-intensity laser-plasma interactions. Conventional accelerator facilities must be large because the accelerating fields are limited by electrical breakdown of the material when the potential difference reaches some threshold. Energy gain is force times distance, so if the field strength (and therefore force) is limited then the distance must be increased to achieve higher and higher particle energies. This has lead to many mile scale facilities being constructed. However, if we use completely ionized gas -- plasma -- it turns out that an accelerating structure can be generated that is not limited in field strength. In other words; an accelerator can be miniaturized. The astonishing field strength in a plasma based accelerator can typically be equivalent to a 2 mile conventional accelerator being reduced to half a meter in length. Plasma accelerators can be created using high intensity lasers, which generate an evacuated ionic cavity, or 'bubble' with strong accelerating electric fields. It turns out that this plasma 'bubble' also has ideal characteristics for providing a miniature wiggler structure; an alternative to an external magnetic structure (such as the 1 mile length LCLS extension to SLAC) for generating radiation. The plasma can therefore be both an accelerator and wiggler combined. Alternatively, a second laser beam can also be used to wiggle the electrons. In both caes, a Doppler-like effect means that the radiation emitted by the relativistic electron beam is upshifted to much higher frequencies than those of the oscillating structure. The combination of lasers and plasmas can therefore provide very intense, energetic sources of x and gamma rays.The drive for radiation sources is prompted by the numerous applications, from aiding the development of the anti-flu drug Relenza or a vaccine for foot and mouth disease to imaging residual stresses in aircraft wings or determining whether Beethoven was poisoned by analysis of a sample of his hair. This has motivated the development of large x-ray light sources around the world. The research proposed here is of a fundamental nature but also with an exciting applicability and potential technological impact. There are a vast number of unanswered questions on the laser propagation, plasma behavior, and radiation generation to be explored. However, one of the most exciting things associated with the research is the potential for miniature and inexpensive synchrotron light sources that could be available more widely; accessible to universities, small research facilities or hospitals. This could revolutionize a vast swath of scientific and engineering disciplines, as researchers from biotechnology to mechanical engineering are currently waiting for time on existing synchrotron light sources. Increased access to brilliant x-ray light sources could therefore increase the progress of technologic development in many fields.
该项目的研究目标是测量和模拟辐射的性质,以及由高强度激光-等离子体相互作用中产生的电子束的电磁相互作用引起的复杂电子动力学。传统的加速器设施必须很大,因为当电势差达到某个阈值时,加速场会受到材料电击穿的限制。能量增益是力乘以距离,所以如果场强(因此力)是有限的,那么距离必须增加,以获得越来越高的粒子能量。这导致了许多英里规模的设施正在建设。然而,如果我们使用完全电离的气体-等离子体-事实证明,可以产生一种加速结构,这种结构不受场强的限制。换句话说,加速器可以小型化。基于等离子体的加速器中的惊人场强通常可以相当于2英里的常规加速器被减小到半米长。等离子体加速器可以使用高强度激光器来创建,其产生真空离子腔或具有强加速电场的“气泡”。事实证明,这种等离子体“气泡”也具有提供微型摇摆器结构的理想特性;外部磁性结构(例如SLAC的1英里长LCLS延伸)的替代品,用于产生辐射。因此,等离子体可以既是加速器又是摇摆器。或者,也可以使用第二激光束来摆动电子。在这两种情况下,类多普勒效应意味着由相对论电子束发射的辐射被上移到比振荡结构的频率高得多的频率。因此,激光和等离子体的结合可以提供非常强烈的高能X射线和伽马射线源,辐射源的驱动力是由众多应用引起的,从帮助开发抗流感药物Relenza或口蹄疫疫苗到对飞机机翼的残余应力进行成像,或者通过分析贝多芬的头发样本来确定他是否中毒。这推动了世界各地大型X射线光源的发展。 这里提出的研究是一个基本的性质,但也具有令人兴奋的适用性和潜在的技术影响。在激光传播、等离子体行为和辐射产生方面还有大量的问题有待探索。然而,与这项研究相关的最令人兴奋的事情之一是微型和廉价的同步加速器光源的潜力,这些光源可以更广泛地使用;大学,小型研究机构或医院都可以使用。这可能会彻底改变大量的科学和工程学科,因为从生物技术到机械工程的研究人员目前正在等待现有同步加速器光源的时间。因此,增加获得明亮的X射线光源的机会可以促进许多领域的技术发展。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alexander Thomas其他文献

Topological quantum field theories from Hecke algebras
赫克代数的拓扑量子场论
Kulturvergleichende Psychologie: eine Einführung
文化心理学:eine Einführung
  • DOI:
  • 发表时间:
    1993
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alexander Thomas;L. H. Eckensberger
  • 通讯作者:
    L. H. Eckensberger
Kultur, Kulturdimensionen und Kulturstandards
文化、文化维度和文化标准
  • DOI:
    10.1007/978-3-531-93449-5_2
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alexander Thomas;Astrid Utler
  • 通讯作者:
    Astrid Utler
Handbuch Interkulturelle Kommunikation und Kooperation: Band 1 und 2 zusammen
跨文化交流与合作手册:Band 1 und 2 zusammen
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Kammhuber;E. Kinast;Sylvia Schroll;Alexander Thomas
  • 通讯作者:
    Alexander Thomas
Control of energy spread and dark current in proton and ion beams generated in high-contrast laser solid interactions.
控制高对比度激光固体相互作用中产生的质子和离子束的能量扩散和暗电流。
  • DOI:
    10.1103/physrevlett.107.065003
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    F. Dollar;Takeshi Matsuoka;George Petrov;Alexander Thomas;S. Bulanov;V. Chvykov;Jack Davis;G. Kalinchenko;C. McGuffey;L. Willingale;V. Yanovsky;A. Maksimchuk;K. Krushelnick
  • 通讯作者:
    K. Krushelnick

Alexander Thomas的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alexander Thomas', 18)}}的其他基金

NSF-GACR: Strong Field QED Plasma Physics at PetaWatt-Class Laser Facilities
NSF-GACR:拍瓦级激光设施的强场 QED 等离子体物理
  • 批准号:
    2206059
  • 财政年份:
    2022
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
Probing Super-Critical Electromagnetic Fields with Petawatt Lasers
用拍瓦激光器探测超临界电磁场
  • 批准号:
    2108075
  • 财政年份:
    2021
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
Development of Ultrashort Relativistic Electron Beams as a Plasma Diagnostic
开发用于等离子体诊断的超短相对论电子束
  • 批准号:
    1804463
  • 财政年份:
    2018
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
Non-linear Optics in Plasmas at Ultra-high Intensities
超高强度等离子体中的非线性光学
  • 批准号:
    0903557
  • 财政年份:
    2009
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant

相似海外基金

Household adaptation amongst hot spots of land degradation vulnerability and bright spots of resilience
土地退化脆弱性热点和复原力亮点中的家庭适应
  • 批准号:
    2343014
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Promoting cognitive resilience and reducing frailty in older Veterans with bright light therapy
通过强光疗法提高老年退伍军人的认知能力并减少虚弱
  • 批准号:
    10590503
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
First high-resolution studies of photospheric bright points as heating drivers: early DKIST science
首次对光球亮点作为加热驱动因素的高分辨率研究:早期 DKIST 科学
  • 批准号:
    2308075
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Theoretical and observational research to resolve the bright-end excess problem of ultraviolet luminosity functions of very high redshift galaxies
解决极高红移星系紫外光度函数亮端过剩问题的理论和观测研究
  • 批准号:
    23H00131
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Exploring the health and environmental drivers of coral reef bright spots
探索珊瑚礁亮点的健康和环境驱动因素
  • 批准号:
    2880800
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Studentship
How Bright is the Radio Sky? A 310 MHz Absolute Map
无线电天空有多亮?
  • 批准号:
    2307198
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
CircaHealth-CircaPain iCT: Targeting circadian rhythmicity using bright light therapy to alleviate chronic low back pain
CircaHealth-CircaPain iCT:利用强光疗法瞄准昼夜节律,缓解慢性腰痛
  • 批准号:
    487551
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Operating Grants
A bright future: The use of Far UV as a disinfectant in the livestock industry—Feasibility studies in the dairy and poultry sectors
光明的未来:在畜牧业中使用远紫外线作为消毒剂——乳制品和家禽行业的可行性研究
  • 批准号:
    10052824
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Collaborative R&D
MRI: Acquisition of instrumentation for a node in the global SONG observing network for ultra high-precision seismology of bright stars
MRI:为全球 SONG 观测网络中的一个节点采购仪器,以进行亮星超高精度地震学研究
  • 批准号:
    2215941
  • 财政年份:
    2022
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Bright Particle
亮粒子
  • 批准号:
    10046496
  • 财政年份:
    2022
  • 资助金额:
    $ 45万
  • 项目类别:
    Grant for R&D
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了