CAREER: Removing Energy Barrier Towards Capacity-Approaching Information Transmission and Storage
职业:消除能量障碍,实现接近容量的信息传输和存储
基本信息
- 批准号:1054270
- 负责人:
- 金额:$ 41.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-01-15 至 2016-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Project AbstractRemoving Energy Barrier towards Capacity-Approaching Information Transmission and StorageThe objective of this research is to cut the total energy of achieving near Shannon capacity information transmission and storage. While it is common to use channel coding to save transmit energy for a reliable delivery, the decode energy of some of the best capacity-approaching codes can be prohibitive due to circuit complexities and overtake transmit energy. Many capacity-approaching codes are not guaranteed to work well either, as they often give up their effectiveness at low error rates, requiring extra transmit energy to maintain their performance. The rising energy for both transmit and decode poses obstacles to future high-performance applications, such as optical and wireline communications, due to the escalating cost of operating closer to the ultimate channel capacity. More severe impediments are placed on low-energy applications, such as battery-powered portable devices and sensors, in their path of acquiring more robust communication and storage capabilities.This research advances state-of-the-art coding algorithms and techniques by addressing two research frontiers of near-capacity low-density parity-check (LDPC) codes: (1) the intrinsic weakness of LDPC codes that is manifested as error floors; and (2) the high decode energy due to interconnection complexity and memory inefficiency. The approaches span coding theory and integrated circuits, and their novelties are threefold: (1) creation of a universal, low-cost local search algorithm to overcome error floors; (2) creation of transient memory to exploit data access pattern for low energy; and (3) new techniques to improve the achievable performance of non-binary LDPC codes while reducing interconnection complexity. This project trains students in both coding theory and integrated circuits and draws broad participation of students, professional colleagues, and industrial partners in collaborative research and education.
项目摘要:消除接近容量的信息传输和存储的能量障碍本研究的目的是减少实现接近香农容量的信息传输和存储的总能量。虽然通常使用信道编码来节省传输能量以实现可靠的传输,但由于电路复杂性和超过传输能量,一些最佳容量接近代码的解码能量可能令人望而却步。许多接近容量的代码也不能保证很好地工作,因为它们经常在低错误率时放弃其有效性,需要额外的传输能量来维持其性能。由于接近最终信道容量的操作成本不断上升,传输和解码的能量不断上升,对未来的高性能应用(如光学和有线通信)构成了障碍。低能耗应用,如电池供电的便携式设备和传感器,在获得更强大的通信和存储能力的道路上,遇到了更严重的障碍。本研究通过解决近容量低密度奇偶校验(LDPC)码的两个研究前沿,推进了最先进的编码算法和技术:(1)LDPC码的内在弱点,表现为错误层;(2)由于互连复杂性和存储效率低下,解码能量高。这些方法涵盖了编码理论和集成电路,它们的新颖之处有三个:(1)创造了一种通用的、低成本的局部搜索算法来克服错误层;(2)建立瞬态存储器,利用低能量的数据访问模式;(3)提高非二进制LDPC码的可实现性能,同时降低互连复杂性的新技术。该项目对学生进行编码理论和集成电路的培训,并吸引学生、专业同事和工业合作伙伴广泛参与合作研究和教育。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhengya Zhang其他文献
Hardware acceleration of iterative image reconstruction for X-ray computed tomography
X 射线计算机断层扫描迭代图像重建的硬件加速
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
J. K. Kim;Zhengya Zhang;J. Fessler - 通讯作者:
J. Fessler
An 8-bit 20.7 TOPS/W Multi-Level Cell ReRAM-based Compute Engine
基于 ReRAM 的 8 位 20.7 TOPS/W 多层单元计算引擎
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Justin M. Correll;Lu Jie;Seungheun Song;Seungjong Lee;Junkang Zhu;Wei Tang;Luke Wormald;Jack Erhardt;N. Breil;R. Quon;D. Kamalanathan;Siddarth A. Krishnan;M. Chudzik;Zhengya Zhang;W. Lu;M. Flynn - 通讯作者:
M. Flynn
A 0.23mW Heterogeneous Deep-Learning Processor Supporting Dynamic Execution of Conditional Neural Networks
支持条件神经网络动态执行的 0.23mW 异构深度学习处理器
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Hsi;Zhengya Zhang;M. Papaefthymiou - 通讯作者:
M. Papaefthymiou
3.7 A 1920×1080 30fps 2.3TOPS/W stereo-depth processor for robust autonomous navigation
3.7 个 1920×1080 30fps 2.3TOPS/W 立体深度处理器,用于强大的自主导航
- DOI:
10.1109/isscc.2017.7870261 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Ziyun Li;Qing Dong;Mehdi Saligane;B. Kempke;Shijia Yang;Zhengya Zhang;R. Dreslinski;D. Sylvester;D. Blaauw;Hun - 通讯作者:
Hun
A 470mV 2.7mW feature extraction-accelerator for micro-autonomous vehicle navigation in 28nm CMOS
用于 28nm CMOS 微型自主车辆导航的 470mV 2.7mW 特征提取加速器
- DOI:
10.1109/isscc.2013.6487684 - 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Don;Yejoong Kim;Inhee Lee;Zhengya Zhang;D. Blaauw;D. Sylvester - 通讯作者:
D. Sylvester
Zhengya Zhang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zhengya Zhang', 18)}}的其他基金
Design of Reliable High-Speed Links with Unreliable Circuits
具有不可靠电路的可靠高速链路的设计
- 批准号:
1255702 - 财政年份:2013
- 资助金额:
$ 41.97万 - 项目类别:
Continuing Grant
SHF: Small: Native Stochastic Computing Based on Memristors
SHF:小型:基于忆阻器的本机随机计算
- 批准号:
1217972 - 财政年份:2012
- 资助金额:
$ 41.97万 - 项目类别:
Standard Grant
相似海外基金
Removing the Disparity in Success-Related Outcomes Between Academically Talented Low-Income Engineering Students and Other Engineering Students
消除有学术才华的低收入工科学生与其他工科学生之间在成功相关成果上的差距
- 批准号:
2322584 - 财政年份:2024
- 资助金额:
$ 41.97万 - 项目类别:
Standard Grant
Identifying and Removing Duplicate Test Requests
识别并删除重复的测试请求
- 批准号:
10090152 - 财政年份:2024
- 资助金额:
$ 41.97万 - 项目类别:
Collaborative R&D
Collaborative Research: SaTC: CORE: Medium: Removing Trust Assumptions from Encryption Systems
协作研究:SaTC:核心:中:从加密系统中删除信任假设
- 批准号:
2318701 - 财政年份:2023
- 资助金额:
$ 41.97万 - 项目类别:
Continuing Grant
Removing the distance from distance learning: utilizing augmented reality to integrate virtual reality distance education students into on-campus classrooms
消除远程学习的距离:利用增强现实将虚拟现实远程教育学生融入校园课堂
- 批准号:
23K00658 - 财政年份:2023
- 资助金额:
$ 41.97万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Unbiased-AI: removing bias from AI systems to facilitate more effective moderation of hate speeches.
无偏见的人工智能:消除人工智能系统中的偏见,以促进更有效地调节仇恨言论。
- 批准号:
10076166 - 财政年份:2023
- 资助金额:
$ 41.97万 - 项目类别:
Grant for R&D
Project TENET: Research on an innovative direct air capture technology that delivers a cheaper and more energy-efficient approach to removing and storing CO2.
项目宗旨:研究创新的直接空气捕获技术,提供一种更便宜、更节能的方法来去除和储存二氧化碳。
- 批准号:
10071228 - 财政年份:2023
- 资助金额:
$ 41.97万 - 项目类别:
Launchpad
AIDA: - AI based Drone-port Automation for higher productivity, scalability and removing human error
AIDA: - 基于人工智能的无人机端口自动化,可提高生产力、可扩展性并消除人为错误
- 批准号:
10079633 - 财政年份:2023
- 资助金额:
$ 41.97万 - 项目类别:
Collaborative R&D
Removing sialic acid ligands of CD28 to enhance T cell cancer immunotherapy
去除CD28的唾液酸配体以增强T细胞癌症免疫治疗
- 批准号:
10668007 - 财政年份:2023
- 资助金额:
$ 41.97万 - 项目类别:
Collaborative Research: SaTC: CORE: Medium: Removing Trust Assumptions from Encryption Systems
协作研究:SaTC:核心:中:从加密系统中删除信任假设
- 批准号:
2318702 - 财政年份:2023
- 资助金额:
$ 41.97万 - 项目类别:
Continuing Grant
ADVANCE Adaptation: Removing Barriers to Institutional Success in STEM at Central Michigan University
提前适应:消除中密歇根大学 STEM 机构成功的障碍
- 批准号:
2305546 - 财政年份:2023
- 资助金额:
$ 41.97万 - 项目类别:
Standard Grant