CAREER: A New Understanding of Flame Dynamics and Turbulence-Chemistry Interaction from 2D/3D/4D Spatio-Temporal Measurements

职业生涯:通过 2D/3D/4D 时空测量对火焰动力学和湍流化学相互作用的新理解

基本信息

  • 批准号:
    1055960
  • 负责人:
  • 金额:
    $ 40万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-03-01 至 2017-02-28
  • 项目状态:
    已结题

项目摘要

The objective of this research is to quantify the time-dependent coupling among the highly unsteady flowfield, species concentrations, local temperature, and reaction rates in turbulent flames. Turbulent flows are inherently time-varying, three-dimensional phenomena, and when coupled with chemical reactions, create a highly dynamic system occurring on multiple length and time scales. Turbulent combustion dynamics are not well understood, which limits the development of both advanced control strategies and predictive numerical models for engineering applications. Current combustion models have difficulty in accurately predicting the time-dependent relationship between the fluctuating turbulent flowfield, reactive scalar mixing, and the complex flame chemistry over a broad range of conditions. Measurements performed under this research program will resolve physical and chemical processes in both space and time and will be used to assess common assumptions found in time-dependent combustion models and guide future approaches. Understanding both the temporal and spatial behavior of turbulent combustion environments is critical for improving modern energy-conversion systems. Intellectual Merit: The proposed research is rooted in a new class of multi-dimensional, high-repetition rate ( 10 kHz) laser diagnostic measurements of velocity, temperature, species concentrations, and reaction rates that have not been available previously. Scalar transport and mixing within turbulent flames, along with individual turbulence-chemistry interactions will be tracked in "real time". Specific research contributions include fully-resolved, four-dimensional (three spatial dimensions and time) temperature and species concentration gradients to analyze the competition between large-scale turbulent transport and small-scale mixing and chemical reaction. Space-time correlations and the governing length and time scales for the velocity and multiple reactive scalar fields will be determined under varying flow conditions. Simultaneous high-speed velocity and scalar measurements will yield flow-flame interactions in time, detailing how species transport, turbulent mixing, and local reaction rates are modified by and coupled to the fluctuating turbulence. Finally, new temporal data and statistics (e.g., fluctuations, correlations, time-scales, and power spectra) derived from the velocity/scalar measurements will serve as improved assessment tools for large-eddy simulation (LES) models. The PI will collaborate with researchers at Sandia National Laboratories and colleagues through the International Workshop on Measurement and Computation of Turbulent Non-Premixed Flames and to assess, validate, and improve the predictive capabilities of current LES approaches.Broader Impacts: A successful project will lead to a new understanding of combustion dynamics, which will have significant impact in the development of predictive combustion models and perhaps lead to improved combustion control within highly transient environments. Both of these factors have the potential to yield improvements in efficiency, flame stability, and pollutant output in combustion systems. Because turbulent combustion processes account for more than 85% of the world's energy usage, improvements in efficiency and lowered emissions have important implications in terms of environmental sustainability and energy security. The research program is heavily integrated into a series of educational and outreach activities with three objectives (1) increasing the interest of pre-college students in pursuing a career in science and engineering through local outreach, (2) fostering active learning (and teaching) at the collegiate level and (3) increasing students- ability to visualize physical concepts, thus making the transition from theory to application more achievable for the individual student. One component of the outreach plan is a series of interactive teaching modules will be developed and delivered at a local mastery-based high school which specializes in a STEM-based curriculum targeted for students living in high poverty areas. These modules are intended to cultivate interests in scientific and engineering disciplines within minority students who have had little exposure to science and math-based careers.
本研究的目的是量化的高度不稳定的流场,组分浓度,局部温度和湍流火焰中的反应速率之间的时间相关的耦合。 湍流本质上是随时间变化的三维现象,当与化学反应相结合时,会产生一个发生在多个长度和时间尺度上的高度动态系统。 湍流燃烧动力学还没有得到很好的理解,这限制了先进控制策略和预测数值模型的工程应用的发展。 目前的燃烧模型难以准确地预测波动湍流流场,反应标量混合,和复杂的火焰化学之间的时间依赖关系在广泛的条件。 根据该研究计划进行的测量将解决空间和时间上的物理和化学过程,并将用于评估随时间变化的燃烧模型中的常见假设,并指导未来的方法。 了解湍流燃烧环境的时间和空间行为对于改进现代能量转换系统至关重要。智力优势:拟议的研究植根于一种新的多维,高重复率(10 kHz)的速度,温度,物质浓度和反应速率的激光诊断测量,这些测量以前都没有。 标量传输和湍流火焰内的混合,沿着与个人的粘性化学相互作用将被跟踪在“真实的时间”。 具体的研究贡献包括完全解析的四维(三个空间维度和时间)温度和物种浓度梯度,以分析大尺度湍流传输和小尺度混合和化学反应之间的竞争。 将在变化的流动条件下确定速度场和多个反应标量场的时空相关性以及控制长度和时间尺度。 同时高速速度和标量测量将产生流火焰的相互作用的时间,详细说明如何物种运输,湍流混合和局部反应速率的修改和耦合到波动的湍流。 最后,新的时间数据和统计(例如,波动,相关性,时间尺度,和功率谱)从速度/标量测量将作为大涡模拟(LES)模式的改进评估工具。 PI将通过湍流非预混火焰测量和计算国际研讨会与桑迪亚国家实验室的研究人员及其同事合作,评估、验证和改进当前LES方法的预测能力。一个成功的项目将导致对燃烧动力学的新理解,这将在预测燃烧模型的开发中具有显著的影响,并且可能导致在高度瞬变环境中的改进的燃烧控制。 这两个因素都有可能提高燃烧系统的效率、火焰稳定性和污染物排放。 由于湍流燃烧过程占世界能源使用量的85%以上,因此提高效率和降低排放对环境可持续性和能源安全具有重要意义。该研究计划被大量整合到一系列的教育和推广活动中,有三个目标:(1)通过当地推广活动增加大学预科学生追求科学和工程职业的兴趣,(2)促进主动学习(和教学)在大学一级和(3)提高学生的能力,形象化的物理概念,从而使得从理论到应用的过渡对于个别学生来说更容易实现。 外联计划的一个组成部分是,将在当地一所硕士制高中开发和提供一系列互动式教学模块,该高中专门为生活在高度贫困地区的学生开设基于科学、技术、工程和数学的课程。 这些单元旨在培养很少接触科学和数学职业的少数民族学生对科学和工程学科的兴趣。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jeffrey Sutton其他文献

Jeffrey Sutton的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jeffrey Sutton', 18)}}的其他基金

Coupled Mixing and Auto-Ignition Dynamics of Turbulent Fuel Jets Issuing into Hot and Vitiated Oxidizing Environments
喷入高温和劣化氧化环境的湍流燃料射流的耦合混合和自燃动力学
  • 批准号:
    1605136
  • 财政年份:
    2016
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Acquisition of a High-Pulse-Energy, Narrow-Linewidth, UV Laser Source: Improved Quantitative Gas-Phase Mixing Measurements in Turbulent Spray Flows
获取高脉冲能量、窄线宽紫外激光源:改进湍流喷雾流中的定量气相混合测量
  • 批准号:
    1336913
  • 财政年份:
    2013
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Multi-Scale Fluid Turbulence-Scalar Mixing Dynamics in Gas-Phase Turbulent Jets
气相湍流射流中的多尺度流体湍流标量混合动力学
  • 批准号:
    1336761
  • 财政年份:
    2013
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
EAGER: Enhancements in Raman/Rayleigh Scattering Imaging in Turbulent Flames Using Multi-Pass, Optical Phase-Conjugated Scattering
EAGER:使用多通道光相位共轭散射增强湍流火焰中的拉曼/瑞利散射成像
  • 批准号:
    1247450
  • 财政年份:
    2012
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Quantitative Gas-Phase Scalar Mixing Measurements in Turbulent Spray Flows
湍流喷雾流中的定量气相标量混合测量
  • 批准号:
    1067625
  • 财政年份:
    2011
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
MRI: Development of a High Energy, High-Repetition-Rate Laser Diagnostic System for Time-Resolved Investigations of Turbulent Combustion Processes
MRI:开发高能量、高重复率激光诊断系统,用于湍流燃烧过程的时间分辨研究
  • 批准号:
    0923340
  • 财政年份:
    2009
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Acquisition of a High-Energy, Narrow Linewidth Laser for Gas-Phase Scalar Mixing Studies in Turbulent Spray Flows
获取高能、窄线宽激光器,用于湍流喷雾流中的气相标量混合研究
  • 批准号:
    0853513
  • 财政年份:
    2009
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant

相似海外基金

Is New Guinea the missing link for understanding Australia’s rainforests?
新几内亚是了解澳大利亚雨林的缺失环节吗?
  • 批准号:
    DP240101534
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Discovery Projects
Understanding mosquito smell system: a new frontier in mosquito control
了解蚊子的气味系统:蚊子控制的新领域
  • 批准号:
    DP240103188
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Discovery Projects
Collaborative Research: Understanding New Labor Relations for the 21st Century
合作研究:理解21世纪的新型劳动关系
  • 批准号:
    2346230
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
AQUAWAVE: Advancing Quality and Understanding of Wave Conditions in new Aquaculture Environments
AQUAWAVE:提高新水产养殖环境中波浪条件的质量和理解
  • 批准号:
    NE/Y005198/1
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Research Grant
Beyond Big Brother: New Narratives for Understanding Surveillance
超越老大哥:理解监控的新叙述
  • 批准号:
    DE240101246
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Discovery Early Career Researcher Award
Collaborative Research: Understanding New Labor Relations for the 21st Century
合作研究:理解21世纪的新型劳动关系
  • 批准号:
    2346229
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Understanding the Role of Glycans in Human Norovirus Infection: a Key to Unlock New Therapies (GlycoNoVi)
了解聚糖在人类诺如病毒感染中的作用:开启新疗法的关键 (GlycoNoVi)
  • 批准号:
    EP/X024903/1
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Research Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
  • 批准号:
    2332916
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
  • 批准号:
    2332917
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Understanding how platelets mediate new neuron formation in the adult brain
了解血小板如何介导成人大脑中新神经元的形成
  • 批准号:
    DE240100561
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Discovery Early Career Researcher Award
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了