EAGER: Foundations for Predictive Resource Management in Next-Generation Multicore Processor Systems
EAGER:下一代多核处理器系统中预测资源管理的基础
基本信息
- 批准号:1059283
- 负责人:
- 金额:$ 10万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-09-15 至 2012-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Future multicore processor systems will have a growing amount of system-wide shared resources. However, shared resources will present significant undesirable asymmetry. For example, the capabilities of processor cores, cache access latency, and memory access cost will differ depending on the time and the location of their usage. If such asymmetry is not properly managed, the full potential of the multicore computing paradigm will not be achieved. This exploratory research will investigate a novel predictive resource management framework called MAESTRO. The proposed framework automatically learns asymmetry in the system and useful application behavior; the learned knowledge is accumulated and refined; and resource management decisions, such as cache capacity allocation, are made in a predictive manner by exploiting the accumulated knowledge. It is expected that MAESTRO's predictive strategies with detailed system and application knowledge will be a more effective solution to new multicore resource management problems than conventional reactive strategies with limited knowledge. The PI will validate this expectation with solid system prototyping and by studying two target resource management problems. The project has the potential to impact the way future computer systems are designed and managed. It is inter-disciplinary by nature and requires understating of applications, computer architecture, OS and machine learning. Students working on this project will receive rigorous inter-disciplinary training.
未来的多核处理器系统将具有越来越多的系统范围的共享资源。然而,共享资源将呈现显著的不期望的不对称性。例如,处理器核心的能力、高速缓存访问延迟和存储器访问成本将根据其使用的时间和位置而不同。如果这种不对称性没有得到适当的管理,多核计算范式的全部潜力将无法实现。这项探索性的研究将探讨一种新的预测资源管理框架称为MAESTRO。所提出的框架自动学习系统中的不对称性和有用的应用程序行为;所学到的知识的积累和完善;和资源管理决策,如缓存容量分配,是在预测的方式,通过利用积累的知识。预计MAESTRO的预测策略与详细的系统和应用知识将是一个更有效的解决方案,新的多核资源管理问题比传统的反应策略与有限的知识。PI将通过研究两个目标资源管理问题,用坚实的系统原型来验证这一期望。该项目有可能影响未来计算机系统的设计和管理方式。它本质上是跨学科的,需要了解应用程序,计算机体系结构,操作系统和机器学习。参与该项目的学生将接受严格的跨学科培训。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sangyeun Cho其他文献
BarrierWatch: characterizing multithreaded workloads across and within program-defined epochs
BarrierWatch:描述程序定义的时代之间和内部的多线程工作负载的特征
- DOI:
10.1145/2016604.2016611 - 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Socrates Demetriades;Sangyeun Cho - 通讯作者:
Sangyeun Cho
Design and evaluation of a four-port data cache for high instruction level parallelism reconfigurable processors
高指令级并行可重构处理器的四端口数据缓存的设计和评估
- DOI:
10.1109/iccd.2012.6378693 - 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Kiyeon Lee;Moo;Soojung Ryu;Yeon;Sangyeun Cho - 通讯作者:
Sangyeun Cho
Access region locality for high-bandwidth processor memory system design
高带宽处理器内存系统设计的访问区域局部性
- DOI:
10.1109/micro.1999.809451 - 发表时间:
1999 - 期刊:
- 影响因子:0
- 作者:
Sangyeun Cho;P. Yew;Gyungho Lee - 通讯作者:
Gyungho Lee
On timing constraints of snooping in a bus-based COMA multiprocessor
基于总线的 COMA 多处理器中监听的时序约束
- DOI:
10.1016/s0141-9331(97)00055-0 - 发表时间:
1998 - 期刊:
- 影响因子:0
- 作者:
Sangyeun Cho;Jinseok Kong;Gyungho Lee - 通讯作者:
Gyungho Lee
In-storage processing of database scans and joins
数据库扫描和连接的存储内处理
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:8.1
- 作者:
Sungchan Kim;Hyunok Oh;Chanik Park;Sangyeun Cho;Sang;Bongki Moon - 通讯作者:
Bongki Moon
Sangyeun Cho的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sangyeun Cho', 18)}}的其他基金
CRI: CI-P: Planning for an Innovative Dual-Path Computer Architecture Modeling Infrastructure for Highly Productive System Simulation and Emulation
CRI:CI-P:规划创新的双路径计算机架构建模基础设施,以实现高效的系统仿真和仿真
- 批准号:
1059202 - 财政年份:2011
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Workshop: Support for the Fifteenth International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS), 2010
研讨会:支持第十五届编程语言和操作系统架构支持国际会议 (ASPLOS),2010 年
- 批准号:
1008376 - 财政年份:2010
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
EAGER: CA-RAM: Enabling Fast and Versatile Packet Processing for Future Large-Scale Networks
EAGER:CA-RAM:为未来大规模网络实现快速、多功能的数据包处理
- 批准号:
0952273 - 财政年份:2009
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
WORKSHOP: Support for the 15th International Symposium on High-Performance Computer Architecture (HPCA-15), 2009, Feb. 14-18, 2009
研讨会:支持第 15 届高性能计算机体系结构国际研讨会 (HPCA-15),2009 年,2009 年 2 月 14-18 日
- 批准号:
0909276 - 财政年份:2009
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: AF: Medium: Foundations of Oblivious Reconfigurable Networks
合作研究:AF:媒介:遗忘可重构网络的基础
- 批准号:
2402851 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
Conference: Theory and Foundations of Statistics in the Era of Big Data
会议:大数据时代的统计学理论与基础
- 批准号:
2403813 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Mathematical Foundations of Intelligence: An "Erlangen Programme" for AI
智能的数学基础:人工智能的“埃尔兰根计划”
- 批准号:
EP/Y028872/1 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Research Grant
SAFER - Secure Foundations: Verified Systems Software Above Full-Scale Integrated Semantics
SAFER - 安全基础:高于全面集成语义的经过验证的系统软件
- 批准号:
EP/Y035976/1 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Research Grant
Statistical Foundations for Detecting Anomalous Structure in Stream Settings (DASS)
检测流设置中的异常结构的统计基础 (DASS)
- 批准号:
EP/Z531327/1 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Research Grant
Foundations of Classical and Quantum Verifiable Computing
经典和量子可验证计算的基础
- 批准号:
MR/X023583/1 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Fellowship
CAREER: Statistical foundations of particle tracking and trajectory inference
职业:粒子跟踪和轨迹推断的统计基础
- 批准号:
2339829 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
CAREER: Architectural Foundations for Practical Privacy-Preserving Computation
职业:实用隐私保护计算的架构基础
- 批准号:
2340137 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant