Hydrodynamic Crystals: Structural Evolution in Confined Suspension Flows
流体动力学晶体:受限悬浮液流中的结构演化
基本信息
- 批准号:1059745
- 负责人:
- 金额:$ 27.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-09-01 至 2014-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
0931504BlawzdziewiczUnderstanding of collective hydrodynamic phenomena in microconfined suspension flows is crucial in diverse research fields that range from dynamics of bacterial colonies to microfluidics. Such phenomena, however, are far from being understood. To elucidate collective hydrodynamics of particulate systems we propose to investigate the evolution of strongly confined ordered suspensions in parallel wall channels. We will study two kinds of systems: particle arrays interacting only via hydrodynamic forces, and flow driven colloidal crystals where particle ordering stems from potential and hydrodynamic forces. Our preliminary studies of flow driven ordered particle arrays reveal that these systems show wave propagation, sudden rearrangements of particle lattice, order disorder transitions, and fingering instabilities. Using numerical, experimental and theoretical methods, we will investigate hydrodynamic mechanisms that produce this rich dynamical behavior. Insights from our studies will shed new light on basic questions of particulate flows, will be applicable to other ordered dissipative systems, and will also suggest new strategies for practical applications (e.g., multidrop microfluidic devices and particulate coating flows). The proposed numerical simulations will be performed using our novel Stokesian dynamics algorithm that is accurate and highly efficient. The experimental part will consist in assembling regular 2D particle arrays using holographic optical tweezers, and observing changes in suspension microstructure using confocal microscopy. Our theoretical investigations will involve Fourier analysis of displacement waves in regular particle arrays and an effective medium approach to describe the evolution and instabilities of the arrays.Intellectual Merit: The intellectual value of our proposed research is both fundamental and practical. We will study an entirely new class of hydrodynamic phenomena in creeping particulate flows. Our results will be relevant to nonlinear physics (including dynamics of complex fluids, structural evolution in dusty plasma, and collective motion of flux vortices in superconductors). Our results will also have significant impact on engineering applications, especially in microfluidics. Emerging multidrop microfluidic applications include tunable optical devices, high throughput lab-on-chip assays, and manufacturing microstructured materials. Understanding hydrodynamic mechanisms governing suspension structure under strong confinement conditions is key in such applications, and our proposed research will uncover such mechanisms.Broader Impact: This project will provide educational and research opportunities for graduate, undergraduate and high school students. Graduate and undergraduate students will present their work at New England Complex Fluids Workshops and at national scientific meetings. Students from under represented groups will be recruited through the STARS (Science, Technology and Research Scholars) program at Yale. The PIs will support K-12 education in Greater New Haven by serving as judges in New Haven science fairs. Interdisciplinary significance of our project consists in obtaining results that will be used in physics of pattern formation, physical chemistry, and microfluidic technology. Insights from our research will also be applicable to biological sciences in investigations involving collective hydrodynamic effects, e.g., in studies of bacterial motion. Software for particle tracking and some of the Stokesian dynamics codes will be disseminated through free websites. This research also involves international collaboration.
了解微受限悬浮流中的集体流体动力学现象在从细菌菌落动力学到微流体的各种研究领域都是至关重要的。然而,这样的现象还远未被理解。为了阐明颗粒系统的集体流体动力学,我们建议研究平行壁通道中强受限有序悬浮物的演化。我们将研究两类系统:仅通过流体动力相互作用的粒子阵列和流动驱动的胶体晶体,其中粒子有序源于势和流体动力。我们对流动驱动有序粒子阵列的初步研究表明,这些系统表现出波的传播、粒子晶格的突然重排、有序无序转变和指进不稳定性。利用数值、实验和理论方法,我们将研究产生这种丰富的动力学行为的流体力学机制。我们的研究将为颗粒流的基本问题提供新的启示,将适用于其他有序耗散系统,并将为实际应用(例如,多滴微流控器件和颗粒涂层流动)提供新的策略。所提出的数值模拟将使用我们的新的斯托克斯动力学算法来执行,该算法是准确和高效的。实验部分将包括使用全息光学镊子组装规则的2D粒子阵列,并使用共聚焦显微镜观察悬浮微结构的变化。我们的理论研究将涉及规则粒子阵列中位移波的傅立叶分析,以及描述阵列演化和不稳定性的有效介质方法。智力价值:我们所提出的研究的智力价值既是基础的,也是实用的。我们将研究蠕动颗粒流中的一类全新的流体动力学现象。我们的结果将与非线性物理(包括复杂流体的动力学、尘埃等离子体中的结构演化以及超导体中磁通涡旋的集体运动)有关。我们的结果也将对工程应用产生重大影响,特别是在微流体领域。新兴的多滴微流控应用包括可调谐光学器件、高通量芯片实验室分析和制造微结构材料。了解在强约束条件下控制悬挂结构的流体动力学机制是此类应用的关键,我们拟议的研究将揭示这种机制。广泛的影响:该项目将为研究生、本科生和高中生提供教育和研究机会。研究生和本科生将在新英格兰复杂流体研讨会和国家科学会议上展示他们的工作。来自代表性不足群体的学生将通过耶鲁的STAR(科学、技术和研究学者)计划进行招生。PI将通过在纽黑文科学博览会上担任评委来支持大纽黑文的K-12教育。我们项目的跨学科意义在于获得了将用于图案形成物理、物理化学和微流控技术的结果。我们研究的见解也将适用于生物科学中涉及集体水动力效应的研究,例如在细菌运动的研究中。粒子跟踪软件和一些斯托克斯动力学代码将通过免费网站传播。这项研究还涉及国际合作。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jerzy Blawzdziewicz其他文献
Forced Unfolding of CTPR proteins
- DOI:
10.1016/j.bpj.2008.12.318 - 发表时间:
2009-02-01 - 期刊:
- 影响因子:
- 作者:
Gregg Lois;Jerzy Blawzdziewicz;Corey OHern - 通讯作者:
Corey OHern
The Free Energy Reaction Path Theory of Reliable Protein Folding
- DOI:
10.1016/j.bpj.2008.12.3088 - 发表时间:
2009-02-01 - 期刊:
- 影响因子:
- 作者:
Gregg Lois;Jerzy Blawzdziewicz;Corey O'Hern - 通讯作者:
Corey O'Hern
Jerzy Blawzdziewicz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jerzy Blawzdziewicz', 18)}}的其他基金
Collaborative research: Hydrodynamic mechanisms for flow-induced self-assembly in confined complex fluids
合作研究:受限复杂流体中流动诱导自组装的流体动力学机制
- 批准号:
1603627 - 财政年份:2016
- 资助金额:
$ 27.68万 - 项目类别:
Standard Grant
Hydrodynamic Crystals: Structural Evolution in Confined Suspension Flows
流体动力学晶体:受限悬浮液流中的结构演化
- 批准号:
0931504 - 财政年份:2009
- 资助金额:
$ 27.68万 - 项目类别:
Standard Grant
CAREER: Dynamics of Confined Colloidal Suspensions
职业:受限胶体悬浮液动力学
- 批准号:
0348175 - 财政年份:2004
- 资助金额:
$ 27.68万 - 项目类别:
Continuing Grant
Particle Dynamics in Asymmetric Colloidal Mixtures
不对称胶体混合物中的粒子动力学
- 批准号:
0201131 - 财政年份:2002
- 资助金额:
$ 27.68万 - 项目类别:
Continuing Grant
相似海外基金
Investigations for the heavy atom arrangement in the crystal structures that controls the structural variety of chalcogenide crystals
研究控制硫族化物晶体结构多样性的晶体结构中的重原子排列
- 批准号:
23K04886 - 财政年份:2023
- 资助金额:
$ 27.68万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The mechanism of structural phase transitions in organic crystals accompanied by crystal crushing and their device applications
有机晶体伴随晶体破碎的结构相变机理及其器件应用
- 批准号:
21K05045 - 财政年份:2021
- 资助金额:
$ 27.68万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Structural understanding of magnetic superconductor single crystals of rutheno-cuprates opened by precise synthesis by partial melting
通过部分熔融精确合成开启了对钌铜氧化物磁性超导体单晶的结构理解
- 批准号:
21K04860 - 财政年份:2021
- 资助金额:
$ 27.68万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Construction of innovative proton conductors by precise structural control of inorganic-organic hybrid crystals
通过无机-有机杂化晶体的精确结构控制构建创新质子导体
- 批准号:
21K05232 - 财政年份:2021
- 资助金额:
$ 27.68万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Helix inversion and chiral recognition switching in porous coordination polymer crystals by the amplification of local structural changes
通过放大局部结构变化实现多孔配位聚合物晶体中的螺旋反转和手性识别转换
- 批准号:
21J10357 - 财政年份:2021
- 资助金额:
$ 27.68万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Correlating Structural and Electronic Disorder in Organic Semiconductor Single Crystals
有机半导体单晶中结构和电子无序的关联
- 批准号:
1806419 - 财政年份:2018
- 资助金额:
$ 27.68万 - 项目类别:
Continuing Grant
Computational engineering of advanced materials and devices based on functional, structural and biological liquid crystals
基于功能、结构和生物液晶的先进材料和器件的计算工程
- 批准号:
42069-2013 - 财政年份:2018
- 资助金额:
$ 27.68万 - 项目类别:
Discovery Grants Program - Individual
Development of a method to grow large protein crystals for neutron structural analysis
开发用于中子结构分析的大型蛋白质晶体生长方法
- 批准号:
16K14677 - 财政年份:2016
- 资助金额:
$ 27.68万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Cadmium Zinc Telluride single crystals: influence of structural properties on their performance in radiation detectors
碲化镉锌单晶:结构特性对其在辐射探测器中的性能的影响
- 批准号:
493298-2016 - 财政年份:2016
- 资助金额:
$ 27.68万 - 项目类别:
Engage Grants Program
Surface X-ray diffraction studies of ultrathin films and their structural changes from bulk crystals
超薄膜的表面 X 射线衍射研究及其块状晶体的结构变化
- 批准号:
16H03866 - 财政年份:2016
- 资助金额:
$ 27.68万 - 项目类别:
Grant-in-Aid for Scientific Research (B)