Finitely presented solvable groups at The City College of New York, Fall 2010 conference

在纽约城市学院 2010 年秋季会议上提出有限可解群

基本信息

  • 批准号:
    1061232
  • 负责人:
  • 金额:
    $ 2万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-01-15 至 2011-12-31
  • 项目状态:
    已结题

项目摘要

This project is to support a conference on Finitely presented solvable groups at The City College of New York, Fall 2010. In his address to the International Congress of Mathematicians in 1983, Gromov talked about groups as geometric objects. This followed on his proof in 1981 that finitely generated groups of polynomial growth contain a nilpotent subgroup of finite index, which has helped to focus attention on the extent to which the asymptotic properties of a finitely generated solvable group has on its algebraic structure. This has led to a number of results dealing with the quasi-isometries and rigidity of solvable groups.Some of these results have been motivated by ideas coming out of the theory of lie groups, where the semi-simple ones exhibit a rigidity that is not shared by the solvable ones. This ongoing geometric study of what are perhaps the simplest finitely generated solvable groups has put into sharp relief the very nature of finitely presented solvable groups. Groups arise in many different areas of mathematics, in physics, in chemistry and in chrystallography among other disciplines. One of the reasons for this is that they can be used as a tool for understanding and defining symmetry. Floor patterns in many churches display a symmetry which can be analyzed and better understood by using group theory and it is this kind of symmetry that groups capture, but in a more abstract way. Groups also display an innate symmetry of their own and in recent years efforts have been made to connect geometry to group theory. This is an important area of current research. The objective of this conference is to join the existing combinatorial and theoretical approach of group theory to the geometric approach. The latter requires a great deal of mathematical machinery. The work that is currently being undertaken involves solvable groups introduced by Evariste Galois (who died in 1832 in a duel aged 21) to determine the nature of the solutions of everyday polynomial equations. The aim of the conference is to make the two aspects of group theory available to graduate students, postdocs and interested professionals.
这个项目是为了支持2010年秋季在纽约城市学院举行的一次关于有限陈述的可解决群体的会议。在1983年国际数学家大会上的演讲中,格罗莫夫谈到群是几何对象。这是他在1981年证明多项式增长的有限生成群包含有限指数的幂零子群的结果,这有助于将注意力集中在有限生成可解群的渐近性质对其代数结构的影响程度上。这导致了一些关于可解群的拟等距和刚性的结果,其中一些结果是由李群理论产生的思想所推动的,其中半单群表现出可解群所不具有的刚性。这种正在进行的几何研究可能是最简单的有限生成可解群,它突出了有限表示可解群的本质。小组出现在数学、物理、化学和晶体学等学科的许多不同领域。其中一个原因是它们可以被用作理解和定义对称性的工具。许多教堂的地板图案表现出一种对称性,可以用群论来分析和更好地理解,正是这种对称性被团体捕捉到,但以一种更抽象的方式。群本身也显示出一种与生俱来的对称性,近年来,人们努力将几何学与群论联系起来。这是当前研究的一个重要领域。这次会议的目的是将现有的群论的组合和理论方法与几何方法结合起来。后者需要大量的数学机器。目前正在进行的工作涉及由Evarste Galois(他于1832年死于一场决斗,年仅21岁)引入的可解群,以确定日常多项式方程的解的性质。会议的目的是向研究生、博士后和感兴趣的专业人士提供群论的这两个方面。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gilbert Baumslag其他文献

Wreath products and extensions
  • DOI:
    10.1007/bf01111576
  • 发表时间:
    1963-08-01
  • 期刊:
  • 影响因子:
    1.000
  • 作者:
    Gilbert Baumslag
  • 通讯作者:
    Gilbert Baumslag
Some remarks about multiplicators and finitely presented groups
  • DOI:
    10.1007/bf01110728
  • 发表时间:
    1972-01-01
  • 期刊:
  • 影响因子:
    1.000
  • 作者:
    Gilbert Baumslag
  • 通讯作者:
    Gilbert Baumslag
A finitely presented solvable group that is not residually finite
  • DOI:
    10.1007/bf01237898
  • 发表时间:
    1973-06-01
  • 期刊:
  • 影响因子:
    1.000
  • 作者:
    Gilbert Baumslag
  • 通讯作者:
    Gilbert Baumslag
A generalisation of a theorem of Mal’cev
  • DOI:
    10.1007/bf01650582
  • 发表时间:
    1961-12-01
  • 期刊:
  • 影响因子:
    0.500
  • 作者:
    Gilbert Baumslag
  • 通讯作者:
    Gilbert Baumslag
On a problem of Plotkin concerning locally nilpotent groups
  • DOI:
    10.1007/bf01111102
  • 发表时间:
    1964-02-01
  • 期刊:
  • 影响因子:
    1.000
  • 作者:
    Gilbert Baumslag
  • 通讯作者:
    Gilbert Baumslag

Gilbert Baumslag的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gilbert Baumslag', 18)}}的其他基金

Finitely presented groups at The City College of New York, Spring 2009 conference
纽约城市学院 2009 年春季会议上的有限展示小组
  • 批准号:
    0854902
  • 财政年份:
    2009
  • 资助金额:
    $ 2万
  • 项目类别:
    Standard Grant
Cryptography and Group Theory
密码学和群论
  • 批准号:
    0625271
  • 财政年份:
    2006
  • 资助金额:
    $ 2万
  • 项目类别:
    Standard Grant
Parametric Computation in Axiom Towards Indefinite Symbolic Computing
Axiom 中的参数计算走向不定符号计算
  • 批准号:
    0430722
  • 财政年份:
    2004
  • 资助金额:
    $ 2万
  • 项目类别:
    Standard Grant
New York Group Theory Seminar and Symbolic Computation Workshops
纽约小组理论研讨会和符号计算研讨会
  • 批准号:
    0330802
  • 财政年份:
    2003
  • 资助金额:
    $ 2万
  • 项目类别:
    Standard Grant
Groups with One Defining Relation
具有一个定义关系的组
  • 批准号:
    0202382
  • 财政年份:
    2002
  • 资助金额:
    $ 2万
  • 项目类别:
    Continuing Grant
Algebraic Geometry Over Groups
群上的代数几何
  • 批准号:
    9970618
  • 财政年份:
    1999
  • 资助金额:
    $ 2万
  • 项目类别:
    Continuing grant
Computational Group Theory
计算群论
  • 批准号:
    9973233
  • 财政年份:
    1999
  • 资助金额:
    $ 2万
  • 项目类别:
    Continuing grant
Mathematical Sciences: Finitely Presented Groups
数学科学:有限群
  • 批准号:
    8703251
  • 财政年份:
    1987
  • 资助金额:
    $ 2万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Finitely Presented Groups
数学科学:有限群
  • 批准号:
    8401584
  • 财政年份:
    1984
  • 资助金额:
    $ 2万
  • 项目类别:
    Continuing grant
Finitely Presented Groups
有限呈现群
  • 批准号:
    8103367
  • 财政年份:
    1981
  • 资助金额:
    $ 2万
  • 项目类别:
    Continuing grant

相似海外基金

Influence of visual information presented through a transparent head-mounted display on fast and accurate movements
通过透明头戴式显示器呈现的视觉信息对快速准确运动的影响
  • 批准号:
    23K10606
  • 财政年份:
    2023
  • 资助金额:
    $ 2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Investigating the Novel Challenges Presented by Model Base System Engineering
研究模型库系统工程带来的新挑战
  • 批准号:
    2615351
  • 财政年份:
    2021
  • 资助金额:
    $ 2万
  • 项目类别:
    Studentship
Identification and characterisation of novel ligands presented by the Major Histocompatibility Complex class I-related gene protein (MR1)
主要组织相容性复合体 I 类相关基因蛋白 (MR1) 呈现的新型配体的鉴定和表征
  • 批准号:
    2594439
  • 财政年份:
    2021
  • 资助金额:
    $ 2万
  • 项目类别:
    Studentship
Enabling UK Inter-site Medical Delivery Drone Operations: Meeting the logistical and operational challenges presented by SARS-CoV-2
实现英国现场医疗交付无人机运营:应对 SARS-CoV-2 带来的后勤和运营挑战
  • 批准号:
    84765
  • 财政年份:
    2021
  • 资助金额:
    $ 2万
  • 项目类别:
    Collaborative R&D
Expanding a Model for Interactive Social Science Exhibits Presented in Outdoor Public Spaces
拓展户外公共空间互动社会科学展览的模式
  • 批准号:
    2116110
  • 财政年份:
    2021
  • 资助金额:
    $ 2万
  • 项目类别:
    Continuing Grant
Imprecise Inference from Sequentially Presented Evidence
从顺序呈现的证据中得出不精确的推论
  • 批准号:
    1949418
  • 财政年份:
    2020
  • 资助金额:
    $ 2万
  • 项目类别:
    Standard Grant
Development of novel audio-interfaces using the distantly-presented bone-conducted ultrasound
使用远程骨导超声开发新型音频接口
  • 批准号:
    20H04497
  • 财政年份:
    2020
  • 资助金额:
    $ 2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
T cell recognition of the MR1 presented microbial metabolome
T 细胞识别 MR1 呈递的微生物代谢组
  • 批准号:
    10442759
  • 财政年份:
    2019
  • 资助金额:
    $ 2万
  • 项目类别:
Effects of information presented on a head-mounted display on the human mind and body
头戴式显示器上呈现的信息对人类身心的影响
  • 批准号:
    19K20323
  • 财政年份:
    2019
  • 资助金额:
    $ 2万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
T cell recognition of the MR1 presented microbial metabolome
T 细胞识别 MR1 呈递的微生物代谢组
  • 批准号:
    9975096
  • 财政年份:
    2019
  • 资助金额:
    $ 2万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了