Algebraic Geometry Over Groups
群上的代数几何
基本信息
- 批准号:9970618
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing grant
- 财政年份:1999
- 资助国家:美国
- 起止时间:1999-06-01 至 2003-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9970618 The study of plane curves and their higher-dimensional analogues such as surfaces, is a highly developed subject of great general interest to mathematicians. The objective of this proposal is to continue with the development of an analogous subject, termed algebraic geometry over groups, which applies specifically to group theory. A number of new ideas have arisen which allow us to not only develop a general theory for groups, akin to that in algebraic geometry, but also to look at various classes of groups in a new way. In particular there are groups which in a sense are the counterpart to curves, so-called one-relator groups, which can now be studied from a very different vantage point. In addition, techniques from computational group theory come into play as well and we plan on exploiting them also, in the tenure of this proposal.The notion of symmetry is familiar to most of us. For example, wall-paper patterns, the beautiful arrangements of naturally occurring chrystals and the floor tilings of many old churches are but a few examples of symmetry. Mathematicians have invented a highly abstract object, called a group, which allows them to capture and measure symmetry. The general investigation of such objects, called group theory, has been carried out with this in mind. This theory has applications to much of modern mathematics as well as to physics, chemistry, biology, to the theory of computing, to cryptography as well as to our physical world of three and four dimensions. It is to the further development of this general theory of these groups that this proposal will be devoted.
9970618 平面曲线及其高维类似物(例如曲面)的研究是数学家普遍感兴趣的高度发达的学科。该提案的目的是继续发展一个类似的学科,称为群上的代数几何,它特别适用于群论。许多新思想的出现,使我们不仅能够发展出类似于代数几何中的群的一般理论,而且能够以新的方式看待各种类型的群。特别是有一些群在某种意义上与曲线相对应,即所谓的单相关群,现在可以从一个非常不同的角度来研究它们。此外,计算群论的技术也开始发挥作用,我们也计划在本提案的任期内利用它们。对称性的概念对我们大多数人来说都很熟悉。例如,壁纸图案、天然水晶的美丽排列以及许多古老教堂的地砖只是对称的几个例子。数学家发明了一种高度抽象的对象,称为群,它使他们能够捕获和测量对称性。对这些物体的一般研究,称为群论,就是在考虑到这一点的情况下进行的。该理论适用于许多现代数学以及物理、化学、生物学、计算理论、密码学以及我们的三维和四维物理世界。本提案将致力于进一步发展这些群体的一般理论。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gilbert Baumslag其他文献
Some remarks about multiplicators and finitely presented groups
- DOI:
10.1007/bf01110728 - 发表时间:
1972-01-01 - 期刊:
- 影响因子:1.000
- 作者:
Gilbert Baumslag - 通讯作者:
Gilbert Baumslag
Wreath products and extensions
- DOI:
10.1007/bf01111576 - 发表时间:
1963-08-01 - 期刊:
- 影响因子:1.000
- 作者:
Gilbert Baumslag - 通讯作者:
Gilbert Baumslag
A finitely presented solvable group that is not residually finite
- DOI:
10.1007/bf01237898 - 发表时间:
1973-06-01 - 期刊:
- 影响因子:1.000
- 作者:
Gilbert Baumslag - 通讯作者:
Gilbert Baumslag
A generalisation of a theorem of Mal’cev
- DOI:
10.1007/bf01650582 - 发表时间:
1961-12-01 - 期刊:
- 影响因子:0.500
- 作者:
Gilbert Baumslag - 通讯作者:
Gilbert Baumslag
On a problem of Plotkin concerning locally nilpotent groups
- DOI:
10.1007/bf01111102 - 发表时间:
1964-02-01 - 期刊:
- 影响因子:1.000
- 作者:
Gilbert Baumslag - 通讯作者:
Gilbert Baumslag
Gilbert Baumslag的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gilbert Baumslag', 18)}}的其他基金
Finitely presented solvable groups at The City College of New York, Fall 2010 conference
在纽约城市学院 2010 年秋季会议上提出有限可解群
- 批准号:
1061232 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Standard Grant
Finitely presented groups at The City College of New York, Spring 2009 conference
纽约城市学院 2009 年春季会议上的有限展示小组
- 批准号:
0854902 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Standard Grant
Parametric Computation in Axiom Towards Indefinite Symbolic Computing
Axiom 中的参数计算走向不定符号计算
- 批准号:
0430722 - 财政年份:2004
- 资助金额:
-- - 项目类别:
Standard Grant
New York Group Theory Seminar and Symbolic Computation Workshops
纽约小组理论研讨会和符号计算研讨会
- 批准号:
0330802 - 财政年份:2003
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences: Finitely Presented Groups
数学科学:有限群
- 批准号:
8703251 - 财政年份:1987
- 资助金额:
-- - 项目类别:
Continuing Grant
Mathematical Sciences: Finitely Presented Groups
数学科学:有限群
- 批准号:
8401584 - 财政年份:1984
- 资助金额:
-- - 项目类别:
Continuing grant
相似国自然基金
2019年度国际理论物理中心-ICTP School on Geometry and Gravity (smr 3311)
- 批准号:11981240404
- 批准年份:2019
- 资助金额:1.5 万元
- 项目类别:国际(地区)合作与交流项目
新型IIIB、IVB 族元素手性CGC金属有机化合物(Constrained-Geometry Complexes)的合成及反应性研究
- 批准号:20602003
- 批准年份:2006
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Algebraic geometry over arbitrary (in particular, non-algebraically closed) fields
任意(特别是非代数闭)域上的代数几何
- 批准号:
2886391 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship
Arithmetic Geometry and Dynamics over Finite Fields
有限域上的算术几何和动力学
- 批准号:
557298-2021 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Postdoctoral Fellowships
Arakelov geometry over adelic curves
adelic 曲线上的 Arakelov 几何
- 批准号:
21K03203 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Arithmetic Geometry and Dynamics over Finite Fields
有限域上的算术几何和动力学
- 批准号:
557298-2021 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Postdoctoral Fellowships
Pseudorandom majorants over number fields with applications in arithmetic geometry
数域上的伪随机主数及其在算术几何中的应用
- 批准号:
EP/T01170X/2 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Research Grant
Study of universal families over moduli spaces based on geometry of group actions
基于群作用几何的模空间泛族研究
- 批准号:
20K03533 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Pseudorandom majorants over number fields with applications in arithmetic geometry
数域上的伪随机主数及其在算术几何中的应用
- 批准号:
EP/T01170X/1 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Research Grant
The Fundamental Theorem of Tropical Geometry over Hyperfields
超场热带几何基本定理
- 批准号:
2236572 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Studentship
Geometry of the space of all variations of mixed Hodge structure over complex manifolds
复流形上混合Hodge结构所有变体的空间几何
- 批准号:
19H01787 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Combinatorial techniques in symplectic geometry: moduli spaces of holomorphic vector bundles over curves
辛几何中的组合技术:曲线上全纯向量丛的模空间
- 批准号:
488168-2016 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Postdoctoral Fellowships