Quantum Control of Electron-Hole Wave Packets in Semiconductor Nanostructures with Strong Terahertz Pulses
强太赫兹脉冲对半导体纳米结构中电子空穴波包的量子控制
基本信息
- 批准号:1063632
- 负责人:
- 金额:$ 33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-09-15 至 2015-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
****Technical Abstract****This research addresses a fundamental question of light-matter interactions in condensed matter: How do quantum states in semiconductors evolve in the presence of strong electromagnetic waves? Quantum dynamics of intraband transitions (low-energy excitations of 1-10 meV) in semiconductors are little explored to date; the objective of this project is to establish concrete physical pictures of how the quantum dynamics unfold in a many-electron system. Interacting with electron-hole (e-h) wave packets in semiconductor nanostructures, strong terahertz (THz) pulses induce intraband transitions occurring on a picosecond time scale. Ultrafast optical/THz probe pulses resolve not only the amplitude but also the phase of the quantum states in the time domain so that the quantum dynamics can be completely mapped out. Given that Coulomb interactions govern the quantum dynamics, the time-resolved THz study will provide a novel opportunity to understand Coulomb correlations in the e-h system and decoherence of many-body excitations. As the THz intensity exceeds a certain level, the nature of light-matter interactions will undergo a qualitative transition showing traits of the field-induced motion of electrons and holes. This will set a unique stage to observe the quantum-to-classical transition of light-matter interactions in condensed matter. The outreach programs include optics demonstrations for K-12 students, research experience for high school students, and professional development opportunity for science and math teachers.****Nontechnical Abstract****Terahertz (THz) waves are electromagnetic waves whose frequencies lie between the microwave and infrared regions. Naturally occurring THz radiation fills up the space of everyday life providing warmth, yet this part of the electromagnetic spectrum remains the least explored region. THz science and technology is a new and exciting frontier with a broad range of applications. For example, the unique and advanced techniques of THz spectroscopy have been proved to be a powerful tool to investigate the material properties inaccessible until recently. Interacting with a semiconductor, light can create oppositely charged particles, called electrons and holes. When the optical transition occurs near the energy band gap, the attractive interaction between the charged particles leads to the formation of a hydrogen-like system of an electron-hole pair. THz waves strongly interact with the electron-hole pair in semiconductors, because the hydrogen-like system is resonant at THz frequencies. The THz interaction can induce peculiar quantum dynamics of the electron-hole pair in semiconductor nanostructures. The resulting quantum dynamics and associated optical effects are of great interest because the fundamental physical processes have broad applications for ultrahigh-speed optoelectronic devices beyond 100 GHz. The outreach programs include optics demonstrations for K-12 students, research experience for high school students, and professional development opportunity for science and math teachers.
*技术摘要*这项研究解决了凝聚态中光-物质相互作用的一个基本问题:在强电磁波存在下,半导体中的量子态是如何演变的?到目前为止,半导体中带内跃迁(1-10 meV的低能激发)的量子动力学很少被探索;这个项目的目标是建立如何在多电子系统中展开量子动力学的具体物理图像。强太赫兹(THz)脉冲与半导体纳米结构中的电子-空穴(e-h)波包相互作用,引起皮秒时间尺度上的带内跃迁。超快光/太赫兹探测脉冲不仅可以在时间域上解析量子态的振幅,而且还可以解析量子态的位相,从而可以完整地描绘出量子动力学。考虑到库仑相互作用支配着量子动力学,时间分辨太赫兹研究将为理解e-h系统中的库仑关联和多体激发的退相干提供一个新的机会。当太赫兹强度超过一定水平时,光-物质相互作用的性质将发生质的转变,表现出场诱导电子和空穴运动的特征。这将为观察凝聚态物质中光-物质相互作用的量子到经典跃迁搭建一个独特的舞台。推广计划包括为K-12学生进行光学演示,为高中生提供研究体验,以及为科学和数学教师提供专业发展机会。*非技术摘要*太赫兹(THz)波是频率介于微波和红外之间的电磁波。自然产生的太赫兹辐射充满了日常生活的空间,提供了温暖,但这部分电磁频谱仍然是最少被探索的区域。太赫兹科学技术是一个新的、令人兴奋的前沿领域,有着广泛的应用。例如,太赫兹光谱独特而先进的技术已被证明是研究直到最近还无法获得的材料性质的强大工具。光与半导体相互作用,会产生相反电荷的粒子,称为电子和空穴。当光学跃迁发生在带隙附近时,带电粒子之间的吸引相互作用导致形成电子-空穴对的类氢系统。太赫兹波与半导体中的电子-空穴对强烈相互作用,因为类氢系统在太赫兹频率下是共振的。在半导体纳米结构中,太赫兹相互作用可以引起电子-空穴对的特殊量子动力学效应。由此产生的量子动力学和相关的光学效应引起了人们的极大兴趣,因为基本物理过程在100 GHz以上的超高速光电子器件中有着广泛的应用。外展计划包括为K-12学生进行光学演示,为高中生提供研究经验,以及为科学和数学教师提供专业发展机会。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yun-Shik Lee其他文献
Principles of Terahertz Science and Technology
- DOI:
10.1007/978-0-387-09540-0 - 发表时间:
2008-12 - 期刊:
- 影响因子:0
- 作者:
Yun-Shik Lee - 通讯作者:
Yun-Shik Lee
Yun-Shik Lee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yun-Shik Lee', 18)}}的其他基金
High-Field Terahertz Driven Photocarrier Dynamics in Nanomaterials
纳米材料中的高场太赫兹驱动光载流子动力学
- 批准号:
1905634 - 财政年份:2019
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
CAREER: Coherent Manipulation of Carriers and Nonlinear Optical Processes in Semiconductor Quantum Wells Via Intense Multi-Cycle Terahertz Pulses
职业:通过强多周期太赫兹脉冲对半导体量子阱中的载流子和非线性光学过程进行相干操纵
- 批准号:
0449426 - 财政年份:2005
- 资助金额:
$ 33万 - 项目类别:
Continuing Grant
相似国自然基金
Cortical control of internal state in the insular cortex-claustrum region
- 批准号:
- 批准年份:2020
- 资助金额:25 万元
- 项目类别:
相似海外基金
Strong electron correlations in quantum chemistry: new approaches from machine learning, quantum computing and time-dependent quantum control
量子化学中的强电子相关性:机器学习、量子计算和瞬态量子控制的新方法
- 批准号:
RGPIN-2020-04306 - 财政年份:2022
- 资助金额:
$ 33万 - 项目类别:
Discovery Grants Program - Individual
Active control of fracture and strength for oxide materials using electron beam induced quantum dot array
使用电子束诱导量子点阵列主动控制氧化物材料的断裂和强度
- 批准号:
22H01819 - 财政年份:2022
- 资助金额:
$ 33万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
CAREER: Electron-phonon processes in gate-defined silicon quantum dots: measurement, control, and applications.
职业:门定义硅量子点中的电子声子过程:测量、控制和应用。
- 批准号:
2046428 - 财政年份:2021
- 资助金额:
$ 33万 - 项目类别:
Continuing Grant
Strong electron correlations in quantum chemistry: new approaches from machine learning, quantum computing and time-dependent quantum control
量子化学中的强电子相关性:机器学习、量子计算和瞬态量子控制的新方法
- 批准号:
RGPIN-2020-04306 - 财政年份:2021
- 资助金额:
$ 33万 - 项目类别:
Discovery Grants Program - Individual
Strong electron correlations in quantum chemistry: new approaches from machine learning, quantum computing and time-dependent quantum control
量子化学中的强电子相关性:机器学习、量子计算和瞬态量子控制的新方法
- 批准号:
DGECR-2020-00521 - 财政年份:2020
- 资助金额:
$ 33万 - 项目类别:
Discovery Launch Supplement
Strong electron correlations in quantum chemistry: new approaches from machine learning, quantum computing and time-dependent quantum control
量子化学中的强电子相关性:机器学习、量子计算和瞬态量子控制的新方法
- 批准号:
RGPIN-2020-04306 - 财政年份:2020
- 资助金额:
$ 33万 - 项目类别:
Discovery Grants Program - Individual
Enhancing performance of quantum control techniques for electron spin qubits in silicon quantum dots
增强硅量子点中电子自旋量子位的量子控制技术的性能
- 批准号:
19K14640 - 财政年份:2019
- 资助金额:
$ 33万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Feedforward control of electron spin qubits in quantum dots
量子点中电子自旋量子位的前馈控制
- 批准号:
18H01819 - 财政年份:2018
- 资助金额:
$ 33万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Coherent control of electron-phonon coupled quantum system using interferometric transient reflectivity measurement
使用干涉瞬态反射率测量对电子声子耦合量子系统进行相干控制
- 批准号:
17H02797 - 财政年份:2017
- 资助金额:
$ 33万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Synthetic control of electron-phonon coupling in semiconductor quantum dots
半导体量子点电子声子耦合的综合控制
- 批准号:
1506803 - 财政年份:2015
- 资助金额:
$ 33万 - 项目类别:
Standard Grant