CAREER: Electron-phonon processes in gate-defined silicon quantum dots: measurement, control, and applications.

职业:门定义硅量子点中的电子声子过程:测量、控制和应用。

基本信息

  • 批准号:
    2046428
  • 负责人:
  • 金额:
    $ 68.56万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-08-01 至 2026-07-31
  • 项目状态:
    未结题

项目摘要

Non-technical abstract: Acting like electrically controllable ‘artificial atoms’, quantum dots are a useful system to study a wide range of condensed matter physics phenomena ranging from bond formation and magnetism to the fundamentals of quantum information. In this project, the research team will study the ubiquitous coupling between electrons and phonons. Of particular interest is the impact of the phonons on the spin of the electrons. Control over the phonon-spin interaction, achieved here via nano-structuring and applied strain, has crucial implications for a number of applications, such as quantum computing. In the course of this project, a new generation of undergraduate and graduate students are being trained with expertise in nanoscale fabrication, cryogenics, and microwave measurements. These skills are relevant to the nationwide calls for a quantum workforce. The research efforts are being integrated with the Microelectronics Processing course at Mines via development of illustrative quantum experiments. Finally, modules are being developed to be incorporated into outreach efforts to middle school children in the Rocky Mountain Camp for Dyslexic Children.Technical abstract: Electron-phonon coupling is ubiquitous in Condensed Matter systems. It plays a pivotal role in relaxation and decoherence (in case of multiple spins) of electronic spin states and is predicted to mediate many-body phenomena. An immense body of research on tailoring it in fields as varied as superconductivity and thermoelectrics exists. Insight from these fields has never been applied to experiments in few-spin systems. This is a new and impactful opportunity, since few-spin systems are the fundamental prototype for rationalizing spin dynamics in more complex systems, important for quantum information applications. This project bridges the gap via an experimental effort focused on control and measurement of electron-phonon processes in silicon gate-defined quantum dots. The phonon bath is engineered through nano-structuring and spin-orbit coupling is controlled via applied strain to investigate the theoretically predicted ‘protected’ states. Measurements of spin relaxation and decoherence time are performed. Controlling the coupling of spins to the phonon bath has profound implications. First, it can be used for the design of ‘hot’ qubits and spintronic devices. Second, it leads to an examination of hitherto untested theoretical predictions. Third, the novel protocols developed in the project for sensing nanoscale electron-phonon thermalization are foundational for future quantum thermodynamics studies on the quantum dot platform. Finally, this is a pioneering effort to apply insight from the vast field of nano-phononics to spin qubits and paves the way for future integration of the fields.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要:量子点就像电可控的“人造原子”,是研究从键形成和磁性到量子信息基本原理的各种凝聚态物理现象的有用系统。在这个项目中,研究小组将研究电子和声子之间无处不在的耦合。特别令人感兴趣的是声子对电子自旋的影响。通过纳米结构和施加的应变来控制声子-自旋相互作用,对量子计算等许多应用具有重要意义。在这个项目的过程中,新一代的本科生和研究生正在接受纳米制造,低温和微波测量专业知识的培训。这些技能与全国范围内对量子劳动力的需求有关。研究工作正在通过开发说明性量子实验与矿山的微电子处理课程相结合。最后,模块正在开发中,以纳入外展工作,以中学生在落基山营的诵读困难儿童。技术摘要:电子-声子耦合是无处不在的凝聚态物质系统。它在电子自旋态的弛豫和退相干(在多自旋的情况下)中起着关键作用,并被预测为介导多体现象。在超导和热电等不同领域,存在着大量的研究。从这些领域的见解从来没有被应用到少自旋系统的实验。这是一个新的和有影响力的机会,因为少自旋系统是在更复杂的系统中合理化自旋动力学的基本原型,对量子信息应用很重要。这个项目通过实验努力弥合了差距,重点是控制和测量硅栅极定义的量子点中的电子-声子过程。声子浴是通过纳米结构和自旋轨道耦合的工程控制,通过施加应变调查理论预测的“保护”状态。测量了自旋弛豫和退相干时间。控制自旋与声子池的耦合具有深远的意义。首先,它可以用于“热”量子比特和自旋电子器件的设计。第二,它导致迄今未经检验的理论预测的检查。第三,在该项目中开发的用于感测纳米级电子-声子热化的新协议是量子点平台上未来量子热力学研究的基础。最后,这是一项开创性的努力,将纳米声子学的广阔领域的见解应用于自旋量子比特,并为未来的领域整合铺平了道路。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Meenakshi Singh其他文献

role of gender and training age in shaping physical characteristics of volleyball players
性别和训练年龄在塑造排球运动员身体特征中的作用
Oral rehabilitation and management of mentally retarded.
口腔康复和智障管理。
A NOVEL QSAR MODEL FOR EVALUATING AND PREDICTING THE INHIBITION ACTIVITY OF H1- RECEPTOR ANTAGONISTS: A SERIES OF THIENOPYRIMIDINE DERIVATIVES
评估和预测 H1 受体拮抗剂抑制活性的新型 QSAR 模型:一系列噻吩并嘧啶衍生物
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Meenakshi Singh;S. Singh;M. Chhabria
  • 通讯作者:
    M. Chhabria
Identification of the novel HLA‐DQB1*04:02:01:18 allele in a Maharashtrian individual from India
印度马哈拉施特拉邦个体中新型 HLA-DQB1*04:02:01:18 等位基因的鉴定
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    8
  • 作者:
    Selma Z D'silva;Manisha Tambe;Andrea S Pinto;Meenakshi Singh
  • 通讯作者:
    Meenakshi Singh
Emergence of tigecycline & colistin resistant Acinetobacter baumanii in patients with complicated urinary tract infections in north India
替加环素的出现

Meenakshi Singh的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Meenakshi Singh', 18)}}的其他基金

Thermoelectric Effects in Superconductor-Ferromagnet Hybrids
超导体-铁磁体混合体中的热电效应
  • 批准号:
    1807583
  • 财政年份:
    2018
  • 资助金额:
    $ 68.56万
  • 项目类别:
    Standard Grant

相似国自然基金

Muon--electron转换过程的实验研究
  • 批准号:
    11335009
  • 批准年份:
    2013
  • 资助金额:
    360.0 万元
  • 项目类别:
    重点项目

相似海外基金

Controlling Electron, Magnon, and Phonon States in Quasi-2D Antiferromagnetic Semiconductors for Enabling Novel Device Functionalities
控制准二维反铁磁半导体中的电子、磁子和声子态以实现新颖的器件功能
  • 批准号:
    2205973
  • 财政年份:
    2023
  • 资助金额:
    $ 68.56万
  • 项目类别:
    Continuing Grant
Phonon and electron system with different dimensions formed by silicene manipulation and development of high performance thermoelectric thin film device
硅烯操控形成不同维度的声子和电子体系及高性能热电薄膜器件的开发
  • 批准号:
    23H00258
  • 财政年份:
    2023
  • 资助金额:
    $ 68.56万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Simulating Electron - Phonon Processes with Photonics
用光子学模拟电子-声子过程
  • 批准号:
    2890220
  • 财政年份:
    2023
  • 资助金额:
    $ 68.56万
  • 项目类别:
    Studentship
EAGER-QAC-QSA: Quantum Algorithms for Correlated Electron-Phonon System
EAGER-QAC-QSA:相关电子声子系统的量子算法
  • 批准号:
    2337930
  • 财政年份:
    2023
  • 资助金额:
    $ 68.56万
  • 项目类别:
    Standard Grant
Control theory of photo-induced dynamics in correlated electron systems utilizing phonon-excitation
利用声子激发的相关电子系统光致动力学控制理论
  • 批准号:
    23KJ0883
  • 财政年份:
    2023
  • 资助金额:
    $ 68.56万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
A unified model of electron stopping and electron-phonon coupling to better understand radiation damage in zirconium
电子停止和电子声子耦合的统一模型,以更好地了解锆的辐射损伤
  • 批准号:
    576687-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 68.56万
  • 项目类别:
    Alliance Grants
Superconductivity and competing states: the role of the electron-phonon and Coulomb interactions
超导和竞争态:电子声子和库仑相互作用的作用
  • 批准号:
    RGPIN-2022-03295
  • 财政年份:
    2022
  • 资助金额:
    $ 68.56万
  • 项目类别:
    Discovery Grants Program - Individual
Real space-time observation of electron-phonon coupling in lead halide perovskites by ultrafast nanoscopy
超快纳米显微镜对卤化铅钙钛矿电子声子耦合的实时时空观测
  • 批准号:
    22K14653
  • 财政年份:
    2022
  • 资助金额:
    $ 68.56万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Heterointerface phonon-transport analysis by nanometer-resolution electron spectroscopy
通过纳米分辨率电子能谱进行异质界面声子输运分析
  • 批准号:
    22H01959
  • 财政年份:
    2022
  • 资助金额:
    $ 68.56万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Electron-phonon coupling phenomena in low-dimensional and correlated materials
低维和相关材料中的电子声子耦合现象
  • 批准号:
    RGPIN-2019-07149
  • 财政年份:
    2022
  • 资助金额:
    $ 68.56万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了