HCC: Medium: Control of a Robotic Manipulator via a Brain-Computer Interface

HCC:媒介:通过脑机接口控制机器人操纵器

基本信息

项目摘要

A brain-computer interface (BCI) is a system that allows users, especially individuals with severe neuromuscular disorders, to communicate and control devices using their brain waves. There are over two million people in the United States afflicted by such disorders, many of whom could greatly benefit from assistive devices controlled by a BCI. Over the past two years, it has been demonstrated that a non-invasive, scalp-recorded electroencephalography (EEG) based BCI paradigm can be used by a disabled individual for long-term, reliable control of a personal computer. This BCI paradigm allows users to select from a set of symbols presented in a flashing visual matrix by classifying the resulting evoked brain responses. One of the goals of this project is to establish that the same BCI paradigm and techniques used for the aforementioned demonstration can be straightforwardly implemented to generate high-level commands for controlling a robotic manipulator in three dimensions according to user intent, and that such a BCI can provide superior dimensional control over alternative BCI techniques currently available, as well as a wider variety of practical functions for performing everyday tasks.Electrocorticography (ECoG), electrical activity recorded directly from the surface of the brain, has been demonstrated in recent preliminary work to be another potentially viable control for a BCI. ECoG has been shown to have superior signal-to-noise ratio, and spatial and spectral characteristics, compared to EEG. But the EEG signals used at present to operate BCIs have not been characterized in ECoG. The PI believes ECoG signals can be used to improve the speed and accuracy of BCI applications, including for example control of a robotic manipulator. Thus, additional goals of this project are to characterize evoked responses obtained from ECoG, to use them as control signals to operate a simulated robotic manipulator, and to assess the level of control (speed and accuracy) between the two recording modalities and compare the results to competitive BCI techniques. Because this is a collaborative effort with the Departments of Neurology and Neurosurgery at the Mayo Clinic in Jacksonville, the PI team will have access to a pool of ECoG grid patients from which to recruit participants for this study.Broader Impacts: This research will make a number of contributions in the emerging field of BCI and thus will serve as a step toward providing severely disabled individuals with a new level of autonomy for communicating with others and for performing everyday tasks, which will ultimately dramatically improve their quality of life.
脑机接口(BCI)是一种允许用户,特别是患有严重神经肌肉疾病的人,使用他们的脑电波来交流和控制设备的系统。在美国,有200多万人患有这种疾病,其中许多人可以从BCI控制的辅助设备中受益匪浅。在过去的两年里,已经证明了基于非侵入性的头皮记录脑电(EEG)的BCI范例可以被残疾人用于对个人计算机的长期、可靠的控制。这种脑机接口范例允许用户通过对产生的诱发大脑反应进行分类,从以闪烁的视觉矩阵呈现的一组符号中进行选择。该项目的目标之一是建立用于前述演示的相同的BCI范例和技术可以直接实现,以根据用户意图生成用于控制三维机器人机械手的高级命令,并且这种BCI可以提供比现有的替代BCI技术更优越的维度控制,以及执行日常任务的更广泛的实用功能。与EEG相比,ECOG具有更好的信噪比、空间特性和频谱特性。但是,目前用于操作脑梗死的脑电信号还没有在大脑皮层脑电中表现出来。PI相信ECoG信号可以用来提高BCI应用的速度和精度,例如包括对机器人机械手的控制。因此,本项目的其他目标是表征从ECoG获得的诱发反应的特征,将它们用作操作模拟机器人操作器的控制信号,并评估两种记录模式之间的控制水平(速度和精度),并将结果与竞争对手的脑-机接口技术进行比较。由于这是与杰克逊维尔梅奥诊所神经科和神经外科的合作努力,PI团队将能够接触到ECoG网格患者池,以便为这项研究招募参与者。广泛影响:这项研究将在新兴的脑机接口领域做出许多贡献,从而为严重残疾人士提供与他人交流和执行日常任务的新水平的自主权,这最终将极大地提高他们的生活质量。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dean Krusienski其他文献

Dean Krusienski的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dean Krusienski', 18)}}的其他基金

US-German Research Proposal: ADaptive low-latency SPEEch Decoding and synthesis using intracranial signals (ADSPEED)
美德研究提案:使用颅内信号的自适应低延迟 SPEEch 解码和合成 (ADSPEED)
  • 批准号:
    2011595
  • 财政年份:
    2021
  • 资助金额:
    $ 60.72万
  • 项目类别:
    Continuing Grant
EAGER: EEG-based Cognitive-state Decoding for Interactive Virtual Reality
EAGER:基于脑电图的交互式虚拟现实认知状态解码
  • 批准号:
    1944389
  • 财政年份:
    2019
  • 资助金额:
    $ 60.72万
  • 项目类别:
    Standard Grant
US-German Data Sharing Proposal: CRCNS Data Sharing: REvealing SPONtaneous Speech Processes in Electrocorticography (RESPONSE)
美德数据共享提案:CRCNS 数据共享:揭示皮层电图记录中的自发言语过程 (RESPONSE)
  • 批准号:
    1902395
  • 财政年份:
    2018
  • 资助金额:
    $ 60.72万
  • 项目类别:
    Standard Grant
US-German Data Sharing Proposal: CRCNS Data Sharing: REvealing SPONtaneous Speech Processes in Electrocorticography (RESPONSE)
美德数据共享提案:CRCNS 数据共享:揭示皮层电图记录中的自发言语过程 (RESPONSE)
  • 批准号:
    1608140
  • 财政年份:
    2016
  • 资助金额:
    $ 60.72万
  • 项目类别:
    Standard Grant
EAGER: Investigating the Neural Correlates of Musical Rhythms from Intracranial Recordings
EAGER:研究颅内录音音乐节奏的神经关联
  • 批准号:
    1451028
  • 财政年份:
    2014
  • 资助金额:
    $ 60.72万
  • 项目类别:
    Standard Grant
HCC: Medium: RUI: Control of a Robotic Manipulator via a Brain-Computer Interface
HCC:中:RUI:通过脑机接口控制机器人操纵器
  • 批准号:
    0905468
  • 财政年份:
    2009
  • 资助金额:
    $ 60.72万
  • 项目类别:
    Standard Grant

相似海外基金

HCC: Medium: A novel neural interface for user-driven control of rehabilitation of finger individuation
HCC:中:一种新颖的神经接口,用于用户驱动的手指个性化康复控制
  • 批准号:
    2330862
  • 财政年份:
    2022
  • 资助金额:
    $ 60.72万
  • 项目类别:
    Standard Grant
HCC: Medium: A novel neural interface for user-driven control of rehabilitation of finger individuation
HCC:中:一种新颖的神经接口,用于用户驱动的手指个性化康复控制
  • 批准号:
    2106747
  • 财政年份:
    2021
  • 资助金额:
    $ 60.72万
  • 项目类别:
    Standard Grant
HCC: Medium: Collaborative Research: Neural Control of Powered Artificial Legs
HCC:媒介:合作研究:动力假腿的神经控制
  • 批准号:
    1361549
  • 财政年份:
    2013
  • 资助金额:
    $ 60.72万
  • 项目类别:
    Continuing Grant
HCC: Medium: Collaborative Research: Neural Control of Powered Artificial Legs
HCC:媒介:合作研究:动力假腿的神经控制
  • 批准号:
    1302196
  • 财政年份:
    2013
  • 资助金额:
    $ 60.72万
  • 项目类别:
    Continuing Grant
HCC: Medium: Collaborative Research: Neural Control of Powered Artificial Legs
HCC:媒介:合作研究:动力假腿的神经控制
  • 批准号:
    1302339
  • 财政年份:
    2013
  • 资助金额:
    $ 60.72万
  • 项目类别:
    Continuing Grant
HCC: Medium: Collaborative Research: Improved Control and Sensory Feedback for Neuroprosthetics
HCC:中:合作研究:改进神经假体的控制和感觉反馈
  • 批准号:
    1065027
  • 财政年份:
    2011
  • 资助金额:
    $ 60.72万
  • 项目类别:
    Continuing Grant
HCC: Medium: Collaborative Research: Improved Control and Sensory Feedback for Neuroprosthetics
HCC:中:合作研究:改进神经假体的控制和感觉反馈
  • 批准号:
    1219321
  • 财政年份:
    2011
  • 资助金额:
    $ 60.72万
  • 项目类别:
    Continuing Grant
HCC: Medium: Collaborative Research: Improved Control and Sensory Feedback for Neuroprosthetics
HCC:中:合作研究:改进神经假体的控制和感觉反馈
  • 批准号:
    1064703
  • 财政年份:
    2011
  • 资助金额:
    $ 60.72万
  • 项目类别:
    Continuing Grant
HCC: Medium: Collaborative Research: Improved Control and Sensory Feedback for Neuroprosthetics
HCC:中:合作研究:改进神经假体的控制和感觉反馈
  • 批准号:
    1065497
  • 财政年份:
    2011
  • 资助金额:
    $ 60.72万
  • 项目类别:
    Continuing Grant
HCC: Medium: Collaborative Research: Improved Control and Sensory Feedback for Neuroprosthetics
HCC:中:合作研究:改进神经假体的控制和感觉反馈
  • 批准号:
    1064871
  • 财政年份:
    2011
  • 资助金额:
    $ 60.72万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了