CSR: Medium: Collaborative Research: Programming parallel in-memory data-center applications with Piccolo

CSR:媒介:协作研究:使用 Piccolo 对并行内存数据中心应用程序进行编程

基本信息

  • 批准号:
    1065114
  • 负责人:
  • 金额:
    $ 33.02万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-07-01 至 2015-06-30
  • 项目状态:
    已结题

项目摘要

There is a rising demand to scale application performance by distributing computation across many machines in a data-center. It is difficult to write efficient and robust parallel programs in the data-center setting because programmers need to worry about reducing communication overhead while handling possible machine failures. This project investigates a new data-centric parallel programming model, called Piccolo, that can simplify the construction of in-memory data-center applications such as PageRank, neural network training etc. In-memory applications can hold all their intermediate states in the aggregate memory of many machines and benefit from sharing these intermediate states between machines during computation. Traditionally, these applications have been built using low-level communication-centric primitives such as MPI, resulting in significant programming complexity. The recently popular MapReduce and Dryad also do not fit well with these applications because their data flow programming model lacks support for shared states. Unlike data flow models, Piccolo explicitly supports the sharing of mutable, distributed states via a key/value table interface. Piccolo makes sharing efficient by optimizing for locality of access to shared tables and automatically resolving write-write conflicts using user-defined accumulation functions. As a result, Piccolo is easy to program for, enables applications that do not fit into MapReduce, and achieves good scalable performance.
通过在数据中心的多台机器上分布计算来扩展应用程序性能的需求在不断增长。在数据中心环境中编写高效且健壮的并行程序是很困难的,因为程序员需要考虑在处理可能的机器故障的同时减少通信开销。该项目研究了一种新的以数据为中心的并行编程模型,称为Piccolo,它可以简化内存数据中心应用程序的构建,如PageRank、神经网络训练等。内存中应用程序可以将所有中间状态保存在许多机器的聚合内存中,并在计算期间从机器之间共享这些中间状态中获益。传统上,这些应用程序是使用低级的以通信为中心的原语(如MPI)构建的,这导致了极大的编程复杂性。最近流行的MapReduce和Dryad也不适合这些应用程序,因为它们的数据流编程模型缺乏对共享状态的支持。与数据流模型不同,Piccolo显式支持通过键/值表接口共享可变的分布式状态。Piccolo通过优化对共享表访问的局部性,并使用用户定义的累积函数自动解决write-write冲突,使共享变得高效。因此,Piccolo易于编程,支持不适合MapReduce的应用程序,并实现了良好的可扩展性能。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Marinus Kaashoek其他文献

A Grassmannian band method approach to the Nehari–Takagi problem
  • DOI:
    10.1016/j.jmaa.2005.01.048
  • 发表时间:
    2005-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Orest Iftime;Marinus Kaashoek;Amol Sasane
  • 通讯作者:
    Amol Sasane

Marinus Kaashoek的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Marinus Kaashoek', 18)}}的其他基金

CSR: Medium: A High-Performance Certified File System and Applications
CSR:Medium:高性能认证文件系统和应用程序
  • 批准号:
    1563763
  • 财政年份:
    2016
  • 资助金额:
    $ 33.02万
  • 项目类别:
    Continuing Grant
CSR: Medium: Collaborative Research: The Commutativity Rule for Scalable Systems Software
CSR:媒介:协作研究:可扩展系统软件的交换性规则
  • 批准号:
    1301934
  • 财政年份:
    2013
  • 资助金额:
    $ 33.02万
  • 项目类别:
    Standard Grant
SHF: Medium: Intelligent and Efficient Data Movement for Multicore Systems
SHF:中:多核系统的智能且高效的数据移动
  • 批准号:
    0964106
  • 财政年份:
    2010
  • 资助金额:
    $ 33.02万
  • 项目类别:
    Continuing Grant
CSR: Small: CoreTime: Dynamic Computation Migration for Multicore System Software
CSR:小型:CoreTime:多核系统软件的动态计算迁移
  • 批准号:
    0915164
  • 财政年份:
    2009
  • 资助金额:
    $ 33.02万
  • 项目类别:
    Standard Grant
CSR-PDOS: ISG: Collaborative Research: Building distributed, wide-area applications using WheelFS
CSR-PDOS:ISG:协作研究:使用 WheelFS 构建分布式广域应用程序
  • 批准号:
    0720029
  • 财政年份:
    2007
  • 资助金额:
    $ 33.02万
  • 项目类别:
    Continuing Grant
SGER: Planning Grant Proposal: Identifying Grand Challenges in Distributed Systems
SGER:规划拨款提案:识别分布式系统中的巨大挑战
  • 批准号:
    0540443
  • 财政年份:
    2005
  • 资助金额:
    $ 33.02万
  • 项目类别:
    Standard Grant
ITR: Robust Large-Scale Distributed Systems
ITR:稳健的大型分布式系统
  • 批准号:
    0225660
  • 财政年份:
    2002
  • 资助金额:
    $ 33.02万
  • 项目类别:
    Cooperative Agreement
NYI: Operating Systems for Multiscale Computers
NYI:多尺度计算机操作系统
  • 批准号:
    9457791
  • 财政年份:
    1994
  • 资助金额:
    $ 33.02万
  • 项目类别:
    Continuing Grant

相似海外基金

Collaborative Research: CSR: Medium: Scaling Secure Serverless Computing on Heterogeneous Datacenters
协作研究:CSR:中:在异构数据中心上扩展安全无服务器计算
  • 批准号:
    2312206
  • 财政年份:
    2023
  • 资助金额:
    $ 33.02万
  • 项目类别:
    Continuing Grant
Collaborative Research: CSR: Medium: Architecting GPUs for Practical Homomorphic Encryption-based Computing
协作研究:CSR:中:为实用的同态加密计算构建 GPU
  • 批准号:
    2312276
  • 财政年份:
    2023
  • 资助金额:
    $ 33.02万
  • 项目类别:
    Continuing Grant
Collaborative Research: CSR: Medium: Fortuna: Characterizing and Harnessing Performance Variability in Accelerator-rich Clusters
合作研究:CSR:Medium:Fortuna:表征和利用富含加速器的集群中的性能变异性
  • 批准号:
    2312689
  • 财政年份:
    2023
  • 资助金额:
    $ 33.02万
  • 项目类别:
    Continuing Grant
Collaborative Research: CSR: Medium: Fortuna: Characterizing and Harnessing Performance Variability in Accelerator-rich Clusters
合作研究:CSR:Medium:Fortuna:表征和利用富含加速器的集群中的性能变异性
  • 批准号:
    2401244
  • 财政年份:
    2023
  • 资助金额:
    $ 33.02万
  • 项目类别:
    Continuing Grant
Collaborative Research: CSR: Medium: Scaling Secure Serverless Computing on Heterogeneous Datacenters
协作研究:CSR:中:在异构数据中心上扩展安全无服务器计算
  • 批准号:
    2312207
  • 财政年份:
    2023
  • 资助金额:
    $ 33.02万
  • 项目类别:
    Continuing Grant
Collaborative Research: CSR: Medium: Adaptive Environmental Awareness for Collaborative Augmented Reality
协作研究:企业社会责任:媒介:协作增强现实的自适应环境意识
  • 批准号:
    2312760
  • 财政年份:
    2023
  • 资助金额:
    $ 33.02万
  • 项目类别:
    Continuing Grant
Collaborative Research: CSR: Core: Medium: Scaling Unix/Linux Shell Programs
协作研究:CSR:核心:中:扩展 Unix/Linux Shell 程序
  • 批准号:
    2312346
  • 财政年份:
    2023
  • 资助金额:
    $ 33.02万
  • 项目类别:
    Continuing Grant
Collaborative Research: CSR: Medium: MemDrive: Memory-Driven Full-Stack Collaboration for Autonomous Embedded Systems
协作研究:CSR:媒介:MemDrive:自主嵌入式系统的内存驱动全栈协作
  • 批准号:
    2312397
  • 财政年份:
    2023
  • 资助金额:
    $ 33.02万
  • 项目类别:
    Continuing Grant
Collaborative Research: CSR: Medium: MemDrive: Memory-Driven Full-Stack Collaboration for Autonomous Embedded Systems
协作研究:CSR:媒介:MemDrive:自主嵌入式系统的内存驱动全栈协作
  • 批准号:
    2312396
  • 财政年份:
    2023
  • 资助金额:
    $ 33.02万
  • 项目类别:
    Continuing Grant
Collaborative Research: CSR: Medium: Adaptive Environmental Awareness for Collaborative Augmented Reality
协作研究:企业社会责任:媒介:协作增强现实的自适应环境意识
  • 批准号:
    2312761
  • 财政年份:
    2023
  • 资助金额:
    $ 33.02万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了