G&V: Medium: Collaborative Research: Large Data Visualization Using An Interactive Machine Learning Framework
G
基本信息
- 批准号:1065107
- 负责人:
- 金额:$ 28.03万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-06-01 至 2015-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Abstract - Machiraju, Rangarajan, and ThompsonAs computer power continues to increase, the complexity of simulations also increases thereby producing datasets of unprecedented size. Without effective analysis tools, results from these large-scale simulations cannot be utilized to their fullest extent. This research addresses the problem of large-data visualization and exploration by employing interactive multi-scale machine learning, which exploits an efficient feature-based, multi-resolution representation of the data. The investigators are leveraging methods from the field of machine learning to perform two distinct tasks: identify regions of interest and enhance robustness of feature detection algorithms. The primary outcome of this effort is the realization of a framework for exploring large datasets. Further, this work is introducing a large body of work in machine learning to the field of visualization. Successful completion of this research will help overcome the brittleness of existing visualization methods and foster expedient discovery in many areas of science and engineering.The multi-resolution techniques developed here will employ a two-fold strategy. First, semi-supervised learning based on training with the domain expert is used to develop strategies for selective spatial and temporal refinement of the data. A classifier is constructed to tag the output of the coarse resolution feature detection (i.e. regions) as either interesting or not interesting. Then at the finest scale, interesting local data chunks containing features of interest are identified for further analysis. Second, several local feature detection algorithms, or weak classifiers, are combined into a single, more robust compound classifier using adaptive boosting, or AdaBoost, and a data adaptive variant called CAVIAR that facilitates validated feature detection. Ideally, the compound classifier combines the best of all weak classifiers as they respond to the underlying physical signal. This research is demonstrating the effectiveness of these methods by applying existing local detection algorithms for visualizing vortices in turbulent flow fields.
摘要- Machiraju,Rangarajan,和Rangapson随着计算机能力的不断增加,模拟的复杂性也随之增加,从而产生前所未有的规模的数据集。 如果没有有效的分析工具,这些大规模模拟的结果就不能得到最充分的利用。本研究通过采用交互式多尺度机器学习来解决大数据可视化和探索的问题,该机器学习利用了数据的有效的基于特征的多分辨率表示。研究人员正在利用机器学习领域的方法来执行两项不同的任务:识别感兴趣的区域和增强特征检测算法的鲁棒性。这一努力的主要成果是实现了一个探索大型数据集的框架。此外,这项工作正在将机器学习中的大量工作引入可视化领域。这项研究的成功完成将有助于克服现有可视化方法的脆弱性,并促进在许多科学和工程领域的有利发现。这里开发的多分辨率技术将采用双重策略。首先,半监督学习的基础上与领域专家的培训是用来制定战略,选择性的空间和时间细化的数据。 构造分类器以将粗分辨率特征检测的输出(即区域)标记为感兴趣或不感兴趣。然后,在最精细的尺度上,识别出包含感兴趣特征的感兴趣的局部数据块以供进一步分析。其次,几个局部特征检测算法,或弱分类器,被组合成一个单一的,更强大的复合分类器,使用自适应增强,或AdaBoost,和一个数据自适应变体称为CAVIAR,有利于验证的特征检测。理想情况下,复合分类器结合了所有弱分类器中最好的,因为它们响应于潜在的物理信号。本研究通过应用现有的局部检测算法来可视化湍流场中的旋涡,从而证明了这些方法的有效性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Thompson其他文献
Fundamentals of Rail Vehicle Dynamics: Guidance and Stability
- DOI:
10.1243/0954409042389391 - 发表时间:
2004-05 - 期刊:
- 影响因子:0
- 作者:
David Thompson - 通讯作者:
David Thompson
Population trends of harbour and grey seals in the Greater Thames Estuary
大泰晤士河口港海豹和灰海豹的种群趋势
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Thea Cox;J. Barker;J. Bramley;A. Debney;David Thompson;A. Cucknell - 通讯作者:
A. Cucknell
Quantum ghost imaging of undisturbed live plants
未受干扰的活植物的量子鬼成像
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Duncan P. Ryan;Kristina Meier;R. Sandoval;David Thompson;David Palmer;Raymond Newell;Kati Seitz;Demosthenes P. Morales;David Hanson;James H. Werner - 通讯作者:
James H. Werner
MYOCARDIAL BLOOD FLOW IN COMBINATION WITH VISUAL ASSESSMENT SIGNIFICANTLY IMPROVES SPECIFICITY WITH FLUPIRIDAZ (18F) PET MPI IN PATIENTS WITH SUSPECTED CORONARY ARTERY DISEASE
在疑似冠状动脉疾病患者中,心肌血流与视觉评估相结合显著提高了氟比哌啶醇(18F)PET MPI 的特异性。
- DOI:
10.1016/s0735-1097(25)02490-8 - 发表时间:
2025-04-01 - 期刊:
- 影响因子:22.300
- 作者:
Christopher Buckley;Kristen Wangerin;Piotr Slomka;Serge D. Van Kriekinge;Jennifer Renaud;Jonathan Moody;Ken Van Train;David Cooke;David Thompson - 通讯作者:
David Thompson
Chemical vapor deposition of ruthenium and ruthenium oxide thin films for advanced complementary metal-oxide semiconductor gate electrode applications
- DOI:
10.1557/jmr.2004.0372 - 发表时间:
2004-10-01 - 期刊:
- 影响因子:2.900
- 作者:
Filippos Papadatos;Steve Consiglio;Spyridon Skordas;Eric T. Eisenbraun;Alain E. Kaloyeros;John Peck;David Thompson;Cynthia Hoover - 通讯作者:
Cynthia Hoover
David Thompson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Thompson', 18)}}的其他基金
Understanding the Influence of Climate Change on Temperature Persistence
了解气候变化对温度持续性的影响
- 批准号:
2116186 - 财政年份:2021
- 资助金额:
$ 28.03万 - 项目类别:
Standard Grant
CHS: Small: Enhancing EEG-based Emotion Estimation with Transfer Learning, Priming, and Virtual Reality
CHS:小:通过迁移学习、启动和虚拟现实增强基于脑电图的情绪估计
- 批准号:
1910526 - 财政年份:2019
- 资助金额:
$ 28.03万 - 项目类别:
Standard Grant
Collaborative Research: Understanding the Role of Coupled Chemistry-climate Interactions in Internal Climate Variability
合作研究:了解化学与气候耦合相互作用在内部气候变化中的作用
- 批准号:
1848785 - 财政年份:2019
- 资助金额:
$ 28.03万 - 项目类别:
Standard Grant
Aspects of the Dynamics of the Coupled Tropsphere-Stratosphere System
对流层-平流层耦合系统的动力学方面
- 批准号:
1643167 - 财政年份:2017
- 资助金额:
$ 28.03万 - 项目类别:
Continuing Grant
Analyses of Large-scale Climate Variability: Understanding Periodicity in the Extratropical Storm Tracks
大尺度气候变率分析:了解温带风暴路径的周期性
- 批准号:
1734251 - 财政年份:2017
- 资助金额:
$ 28.03万 - 项目类别:
Standard Grant
Understanding Two-way Coupling Between Cloud Radiative Effects and the Large-Scale Extratropical Atmospheric Circulation
了解云辐射效应与大规模温带大气环流之间的双向耦合
- 批准号:
1547003 - 财政年份:2016
- 资助金额:
$ 28.03万 - 项目类别:
Standard Grant
Analyses of Large-scale Extratropical Climate Variability and Change
大范围温带气候变率和变化分析
- 批准号:
1343080 - 财政年份:2014
- 资助金额:
$ 28.03万 - 项目类别:
Standard Grant
Modelling of Train Induced Vibration (MOTIV)
列车诱发振动 (MOTIV) 建模
- 批准号:
EP/K006002/1 - 财政年份:2013
- 资助金额:
$ 28.03万 - 项目类别:
Research Grant
Modelling Of Train Induced Vibration (MOTIV)
列车诱发振动 (MOTIV) 建模
- 批准号:
EP/K005847/2 - 财政年份:2013
- 资助金额:
$ 28.03万 - 项目类别:
Research Grant
Optimising Array Form for Energy Extraction and Environmental Benefit (EBAO)
优化阵列形式以实现能量提取和环境效益 (EBAO)
- 批准号:
NE/J004243/1 - 财政年份:2011
- 资助金额:
$ 28.03万 - 项目类别:
Research Grant
相似海外基金
Collaborative Research: Topological Defects and Dynamic Motion of Symmetry-breaking Tadpole Particles in Liquid Crystal Medium
合作研究:液晶介质中对称破缺蝌蚪粒子的拓扑缺陷与动态运动
- 批准号:
2344489 - 财政年份:2024
- 资助金额:
$ 28.03万 - 项目类别:
Standard Grant
Collaborative Research: AF: Medium: The Communication Cost of Distributed Computation
合作研究:AF:媒介:分布式计算的通信成本
- 批准号:
2402836 - 财政年份:2024
- 资助金额:
$ 28.03万 - 项目类别:
Continuing Grant
Collaborative Research: AF: Medium: Foundations of Oblivious Reconfigurable Networks
合作研究:AF:媒介:遗忘可重构网络的基础
- 批准号:
2402851 - 财政年份:2024
- 资助金额:
$ 28.03万 - 项目类别:
Continuing Grant
Collaborative Research: CIF: Medium: Snapshot Computational Imaging with Metaoptics
合作研究:CIF:Medium:Metaoptics 快照计算成像
- 批准号:
2403122 - 财政年份:2024
- 资助金额:
$ 28.03万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
- 批准号:
2403134 - 财政年份:2024
- 资助金额:
$ 28.03万 - 项目类别:
Standard Grant
Collaborative Research: CyberTraining: Implementation: Medium: Training Users, Developers, and Instructors at the Chemistry/Physics/Materials Science Interface
协作研究:网络培训:实施:媒介:在化学/物理/材料科学界面培训用户、开发人员和讲师
- 批准号:
2321102 - 财政年份:2024
- 资助金额:
$ 28.03万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
- 批准号:
2402804 - 财政年份:2024
- 资助金额:
$ 28.03万 - 项目类别:
Standard Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
- 批准号:
2402815 - 财政年份:2024
- 资助金额:
$ 28.03万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Tiny Chiplets for Big AI: A Reconfigurable-On-Package System
合作研究:SHF:中:用于大人工智能的微型芯片:可重新配置的封装系统
- 批准号:
2403408 - 财政年份:2024
- 资助金额:
$ 28.03万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Medium: Using Intelligent Conversational Agents to Empower Adolescents to be Resilient Against Cybergrooming
合作研究:SaTC:核心:中:使用智能会话代理使青少年能够抵御网络诱骗
- 批准号:
2330940 - 财政年份:2024
- 资助金额:
$ 28.03万 - 项目类别:
Continuing Grant