Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis

合作研究:SHF:媒介:可微分硬件合成

基本信息

  • 批准号:
    2403134
  • 负责人:
  • 金额:
    $ 45万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-10-01 至 2028-09-30
  • 项目状态:
    未结题

项目摘要

In the rapidly evolving digital world, creating high-performance and efficient computer hardware is crucial. Electronic design automation (EDA), a process that automates and optimizes the design of hardware, becomes even more critical and challenging with the ever-increasing complexity increases. This project introduces a novel approach to EDA, by solving circuit optimization problems with a blend of formal methods, machine learning, and parallel computing. This proposed research aims to transform the way computer chips are made, making the design process faster, less expensive, and more adaptable. The research findings and tools will be made publicly available to facilitate technology transfers and industry-academia interactions in a multidisciplinary community. The research findings and tools will be made publicly available to support technology transfers and interactions between industry and academia in a multidisciplinary community. This effort will also include active participation in educational and workforce development initiatives, involving high-school students and students from underrepresented groups.In addressing the inherent limitations of existing synthesis solutions, such as unfavorable speed-quality trade-offs and inflexibility in leveraging domain knowledge, the presented research introduces a novel strategy that combines formal techniques with learning-based optimization. Specifically, the research takes a radically different approach by creating differentiable hardware synthesis techniques that are well-suited for heterogeneous computing. The key strategy involves the combination of formal techniques with learning-based optimization, which facilitates efficient global optimization, with or without the need for training data, while taking advantage of the computational power of parallel computing devices like graphics processing units (GPUs). This new approach distinguishes itself from conventional methods by its ability to scale global optimization through parallel computing resources, as well as its potential to combine other machine learning models to enable data-driven optimization via back-propagation. The developed algorithms and software will be made open-source and publicly accessible with comprehensive tutorials and educational materials.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在快速发展的数字世界中,创造高性能和高效率的计算机硬件至关重要。电子设计自动化(EDA)是一个自动化和优化硬件设计的过程,随着复杂性的不断增加,它变得更加关键和具有挑战性。这个项目引入了一种新的EDA方法,通过结合形式化方法、机器学习和并行计算来解决电路优化问题。这项拟议的研究旨在改变计算机芯片的制造方式,使设计过程更快、成本更低、适应性更强。研究成果和工具将公之于众,以促进多学科社区的技术转让和产业界与学术界的互动。研究结果和工具将公之于众,以支持多学科社区中产业界和学术界之间的技术转让和互动。这一努力还将包括积极参与教育和劳动力发展倡议,让高中生和来自代表性不足群体的学生参与。为了解决现有综合解决方案的内在局限性,如不利的速度-质量权衡和利用领域知识的缺乏灵活性,本研究引入了一种新的策略,将形式技术与基于学习的优化相结合。具体地说,这项研究采取了一种截然不同的方法,创造了非常适合于异类计算的可区分硬件合成技术。关键策略包括将正式技术与基于学习的优化相结合,这有助于高效的全局优化,无论是否需要训练数据,同时利用图形处理单元(GPU)等并行计算设备的计算能力。这种新方法与传统方法的不同之处在于,它能够通过并行计算资源来扩展全局优化,以及它有可能结合其他机器学习模型,通过反向传播实现数据驱动的优化。开发的算法和软件将开放源代码,公开提供全面的教程和教育材料。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Cunxi Yu其他文献

Survey on Applications of Formal Methods in Reverse Engineering and Intellectual Property Protection
形式化方法在逆向工程和知识产权保护中的应用综述
  • DOI:
    10.1007/s41635-018-0044-3
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Keshavarz;Cunxi Yu;S. Ghandali;Xiaolin Xu;Daniel E. Holcomb
  • 通讯作者:
    Daniel E. Holcomb
Dataless Quadratic Neural Networks for the Maximum Independent Set Problem
无数据二次神经网络求解最大独立集问题
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ismail R. Alkhouri;Cedric Le Denmat;Yingjie Li;Cunxi Yu;Jia Liu;Rongrong Wang;Alvaro Velasquez
  • 通讯作者:
    Alvaro Velasquez
Reverse engineering of irreducible polynomials in GF(2m) arithmetic
GF(2m) 算法中不可约多项式的逆向工程
Logic Debugging of Arithmetic Circuits
算术电路的逻辑调试
FlowTune: Practical Multi-armed Bandits in Boolean Optimization

Cunxi Yu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Cunxi Yu', 18)}}的其他基金

Collaborative Research: FMitF: Track I: DeepSmith: Scheduling with Quality Guarantees for Efficient DNN Model Execution
合作研究:FMitF:第一轨:DeepSmith:为高效 DNN 模型执行提供质量保证的调度
  • 批准号:
    2349461
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
SHF: Small: Boosting Reasoning in Boolean Networks with Attributed Graph Learning
SHF:小:通过属性图学习增强布尔网络的推理
  • 批准号:
    2350186
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
CAREER: OneSense: One-Rule-for-All Combinatorial Boolean Synthesis via Reinforcement Learning
职业:OneSense:通过强化学习进行一刀切的组合布尔综合
  • 批准号:
    2349670
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
FET: Small: LightRidge: End-to-end Agile Design for Diffractive Optical Neural Networks
FET:小型:LightRidge:衍射光神经网络的端到端敏捷设计
  • 批准号:
    2321404
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
CAREER: OneSense: One-Rule-for-All Combinatorial Boolean Synthesis via Reinforcement Learning
职业:OneSense:通过强化学习进行一刀切的组合布尔综合
  • 批准号:
    2047176
  • 财政年份:
    2021
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
SHF: Small: Boosting Reasoning in Boolean Networks with Attributed Graph Learning
SHF:小:通过属性图学习增强布尔网络的推理
  • 批准号:
    2008144
  • 财政年份:
    2020
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Collaborative Research: FMitF: Track I: DeepSmith: Scheduling with Quality Guarantees for Efficient DNN Model Execution
合作研究:FMitF:第一轨:DeepSmith:为高效 DNN 模型执行提供质量保证的调度
  • 批准号:
    2019336
  • 财政年份:
    2020
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant

相似国自然基金

水凝胶改性陶瓷人工关节牢固结合界面的构筑与减磨润滑机理研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
锆酸铅基反铁电体畴动力学及其调控机理研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
载铁生物炭对土壤镉污染的吸附固定及微生物协同作用机制研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
SREBP转录因子BbSre1负调控球孢白僵菌抗真菌物质产生的机制研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
面向截肢患者运动感知重建的肌电假肢手关节运动反馈时变编码研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
面向水质应急快检的碳点/微流控限域增强发光传感研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
面向挠性压电太阳翼的物理信息混合建模与非同位控制方法研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
随机3维 Burgers 方程正则性研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
犬尿氨酸通过AhR/STAT3轴活化粒细胞样MDSCs促进慢性肾脏病心脏纤维化的机制研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
磁性的机器学习研究: 以图神经网络为中心
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
  • 批准号:
    2331302
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
  • 批准号:
    2331301
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
  • 批准号:
    2412357
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
  • 批准号:
    2402804
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Tiny Chiplets for Big AI: A Reconfigurable-On-Package System
合作研究:SHF:中:用于大人工智能的微型芯片:可重新配置的封装系统
  • 批准号:
    2403408
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Toward Understandability and Interpretability for Neural Language Models of Source Code
合作研究:SHF:媒介:实现源代码神经语言模型的可理解性和可解释性
  • 批准号:
    2423813
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
  • 批准号:
    2402806
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
  • 批准号:
    2403135
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Tiny Chiplets for Big AI: A Reconfigurable-On-Package System
合作研究:SHF:中:用于大人工智能的微型芯片:可重新配置的封装系统
  • 批准号:
    2403409
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
  • 批准号:
    2402805
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了