RI: Medium: Interactive Transfer Learning in Dynamic Environments

RI:媒介:动态环境中的交互式迁移学习

基本信息

  • 批准号:
    1065251
  • 负责人:
  • 金额:
    $ 104.82万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-09-01 至 2014-08-31
  • 项目状态:
    已结题

项目摘要

Machine learning (ML) has witnessed tremendous success both in establishing firm theoretical foundations and reaching out to major applications ranging from the scientific (e.g. computational biology) to the practical (e.g. financial fraud detection, spam detection). However the reach of machine learning has been hampered by an underlying inductive framework that largely has not evolved from using only labeled instances of concepts (e.g. emails and yes/no labels on whether they are spam) and its overly simple view of the role of the user or subject matter expert (SME) as a mere provider of the labels for the training instances. However, when instructing humans, teachers provide richer information: Why is an instance of a concept a good positive example? What are key differences between instances belonging to different classes? Which properties are transient and which are invariant? Where should the learner focus attention? What does the current learning task have in common with previously acquired concepts or processes? Answers to such questions not only enrich the learning process, but they also can effectively reduce the hypothesis space and provide significant speed ups in learning than can be achieved with use of class membership feedback only.The aim of this project is to bring this kind of richer interaction into the realm of machine learning by developing frameworks as well as machine learning methods that can take advantage of fuller mixed-initiative communication. In particular, this project aims to develop ML algorithms that can exploit information from SME's such as (1) identification of landmark instances; (2) proposing rules of thumb; (3) providing feedback on similarity of instances; and (4) transfer of similarity measures themselves. This project brings to bear four streams of research: (1) algorithms based on similarity functions and landmark instances; (2) active and "pro-active" learning; (3) Bayesian active transfer learning; and (4) learning to cope with temporal evolution in the underlying data distribution. In order to reach practical results, this project focuses on challenges where these new methods are both most needed and likely to prove most effective, such as learning in dynamic environments with concept drift, and where potential for long-term transfer learning is present. Broader impacts include more effective learning by incorporating scientific domain knowledge in eScience, for instance in computational proteomics. Educational and research-community outreach includes participation of graduates and undergraduates from Howard University, for instance in yearly research gatherings involving all students on the project, and reusable open-source methods and data sets.
机器学习(ML)在建立坚实的理论基础和扩展到从科学(例如计算生物学)到实践(例如金融欺诈检测,垃圾邮件检测)的主要应用方面都取得了巨大的成功。 然而,机器学习的范围受到了底层归纳框架的阻碍,该框架在很大程度上没有从仅使用概念的标记实例(例如,电子邮件和关于它们是否是垃圾邮件的是/否标签)以及其过于简单的用户或主题专家(SME)角色的观点发展而来,仅仅是训练实例的标签提供者。然而,在指导人类时,教师提供了更丰富的信息:为什么一个概念的实例是一个好的正面例子?属于不同类的实例之间的主要区别是什么?哪些属性是瞬时的,哪些是不变的? 学习者应该把注意力集中在哪里? 当前的学习任务与先前获得的概念或过程有什么共同之处?对这些问题的回答不仅丰富了学习过程,但它们也可以有效地减少假设空间,并在学习中提供比仅使用类成员反馈所能实现的显著速度。该项目的目的是通过开发框架以及可以利用更充分的混合-主动沟通。特别是,该项目旨在开发可以利用SME信息的ML算法,例如(1)地标实例的识别;(2)提出经验法则;(3)提供实例相似性的反馈;以及(4)相似性度量本身的转移。该项目带来了四个研究流:(1)基于相似性函数和地标实例的算法;(2)主动和“主动”学习;(3)贝叶斯主动迁移学习;(4)学习科普底层数据分布的时间演变。为了达到实际效果,该项目侧重于最需要这些新方法并且可能证明最有效的挑战,例如在具有概念漂移的动态环境中学习,以及存在长期迁移学习潜力的地方。更广泛的影响包括通过将科学领域的知识纳入电子科学,例如在计算蛋白质组学中,实现更有效的学习。 教育和研究-社区外联包括霍华德大学的毕业生和本科生参加,例如参加项目所有学生参加的年度研究聚会,以及可重复使用的开放源码方法和数据集。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jaime Carbonell其他文献

Epileptiform electroencephalogram discharges increase seizure recurrence risk in patients with acute symptomatic seizure due to a structural brain lesion
  • DOI:
    10.1016/j.seizure.2024.02.001
  • 发表时间:
    2024-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Laia Grau-López;Belén Flores-Pina;Marta Jiménez;Jaime Carbonell;Jordi Ciurans;Eva Chies;Olga Fagundez;Alejandra Fumanal;Juan Luis Becerra
  • 通讯作者:
    Juan Luis Becerra
Tissue-specific patterns of caspase-1 and cytokines in excisional wounds are altered by shock in rat skin and muscle
  • DOI:
    10.1016/j.jcrc.2012.10.038
  • 发表时间:
    2013-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Ravi Starzl;Dolores Wolfram;Ruben Zamora;Bahiyyah Jefferson;Derek Barclay;Chien Ho;Gerald Brandacher;Stefan Schneeberger;W.P. Andrew Lee;Jaime Carbonell;Yoram Vodovotz
  • 通讯作者:
    Yoram Vodovotz
Activity Theory : Legacies , Standpoints , and Hopes : A discussion of Andy Blunden ’ s An Interdisciplinary Theory of Activity
活动理论:遗产、立场和希望:对安迪·布伦登的跨学科活动理论的讨论
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    D. Rumbaugh;James E. King;Michael J Beran;David A. Washburn;K. Gould;Nate Kornell;D. J. Scaturo;Brian D. Haig;R. Schvaneveldt;Benjamin K. Barton;Thomas A. Ulrich;Peter Robinson;Matthew J. Schuelke;Eric Anthony Day;Henry W. Chase;E. Carayannis;Timothy M. Flemming;Michael C. Mitchelmore;Paul White;Erin M. Brodhagen;M. Gettinger;E. Usher;David B. Morris;Janna Wardman;J. R. Nelson;R. Low;P. Jin;Betty K. Tuller;Noël Nguyen;Fons Wijnhoven;Gerhard Weber;C. Rigg;K. Trehan;Michael L. Jones;Aytac Gogus;N. Seel;Som Naidu;Danny R. Bedgood;Christina M. Steiner;Birgit Marte;Jürgen Heller;Dietrich Albert;A. Podolskiy;Lorna Uden;Andrew J. Martin;C. Balkenius;B. Johansson;Karen L. Hollis;David A. Cook;J. Bloomberg;Otmar Bock;R. Clariana;Simon Hooper;Amy B. Adcock;R. Van Eck;Chin;Chung;M. Burtsev;J. S. Nairne;Marco Vasconcelos;Josefa N. S. Pandeirada;Liu Yang;Jaime Carbonell;M. Dornisch;G. Manaster;Katie Davis;Marcia L. Conner;Dolores Fidishun;Mark Tennant;J. Gurlitt;J. Fletcher;S. Cerri;G. Veletsianos;P. Wickman;Jason D. Baker;M. Gläser;Soumaya Chaffar;C. Frasson;Dirk Hermans;Heleen Vandromme;Els Joos;Leily Ziglari;Benjamin D. Nye;Barry G. Silverman;E. Marchione;M. Salgado;Mimi Bong;Joaquin A. Anguera;Jin Bo;R. D. Seidler;K. Cennamo;V. Munde;C. Vlaskamp;W. Ruijssenaars;Bea Maes;H. Nakken;John Biggs;C. Tang;Vicki S. Napper;Carolyn E. Schwartz;Zhanna Reznikova;Ben Seymour;W. Yoshida;Ray Dolan;M. Speekenbrink;C. Breitenstein;Stefan Knecht;M. Guarini;Royal Skousen;Steve Chandler;Wendelin M. Küpers;U. Goswami;P. Blenkiron;A. Antonietti;Robert Samuel Matthews;Charlotte Hua Liu;Geoffrey Hall;Mireille Bétrancourt;Sandra Berney;Cathrine Hasse;Nigel Stepp;Martin Volker Butz;Giovanni Pezzulo;Filipo Studzinski Perotto;S. Cooray;A. Bakala;K. Purandare;Anusha Wijeratne;Jeff C. Marshall;Soh;Andrew Byrne;J. Campbell;Umar Syed;Klaus Nielsen;R. Feltman;Andrew J. Elliot;N. Entwistle;Bhaskar DasGupta;Derong Liu;Henning Fernau;Yu;Janusz Wojtusiak;Damian Grace;John M. Keller;Michael J. Ford;Nathalie Muller Mirza;Michael Jackson;Dana LaCourse Munteanu;Jason Arndt;Eva L. Baker;Fabio Alivernini;F. Tonneau;J. Jozefowiez;D. Sagi;Y. Adini;M. Tsodyks;Melissa L. Allen;Friedrich T. Sommer;Vivienne B. Carr;Kristina Wieland;Leslie C. Novosel;D. Deshler;Daniel T. Pollitt;Carrie Mark;Belinda B. Mitchell;K. Wolf;Notger G. Müller;M. Haselgrove;L. Gregory Appelbaum;Joseph A. Harris;Ulrike Halsband;E. Davelaar;Andrew Finch;W. Timothy Coombs;Annie Lang;O. Podolskiy;Stephen Billett;Joseph Psotka;Åsa Hammar;J. Worthen;R. Reed Hunt;Margaret MacDougall;É. Le Bourg;Tiago V. Maia
  • 通讯作者:
    Tiago V. Maia
Machine Learning: A Maturing Field
  • DOI:
    10.1023/a:1022665512030
  • 发表时间:
    1992-06-01
  • 期刊:
  • 影响因子:
    2.900
  • 作者:
    Jaime Carbonell
  • 通讯作者:
    Jaime Carbonell
Management of lipid-lowering treatment in patients with ischemic stroke in Catalonia and Balearic Islands, Spain. Malic study phase 3. Preliminary results
  • DOI:
    10.1016/j.atherosclerosis.2024.118181
  • 发表时间:
    2024-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    Carolina Guerrero;Dídac Llop;Marta Mauri;Mertixell Royuela;Eva Anoro;Jaime Carbonell;Oriol Barrachina;David Cánovas;Rosa Borrallo;Àngels Pedragosa Vall
  • 通讯作者:
    Àngels Pedragosa Vall

Jaime Carbonell的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jaime Carbonell', 18)}}的其他基金

EAGER: Distributed Learning in Expert Referral Networks
EAGER:专家推荐网络中的分布式学习
  • 批准号:
    1649225
  • 财政年份:
    2016
  • 资助金额:
    $ 104.82万
  • 项目类别:
    Standard Grant
EAGER: TEACHER: A Pilot Study on Mining the Web for Customized Curriculum Planning
EAGER:老师:挖掘网络进行定制课程规划的试点研究
  • 批准号:
    1350364
  • 财政年份:
    2013
  • 资助金额:
    $ 104.82万
  • 项目类别:
    Standard Grant
LETRAS: A Learning-based Framework for Machine Translation of Low Resource Languages
LETRAS:基于学习的低资源语言机器翻译框架
  • 批准号:
    0534217
  • 财政年份:
    2006
  • 资助金额:
    $ 104.82万
  • 项目类别:
    Continuing Grant
ITR/PE: AVENUE: Adaptable Voice Translation for Minority Languages
ITR/PE:AVENUE:针对少数民族语言的自适应语音翻译
  • 批准号:
    0121631
  • 财政年份:
    2001
  • 资助金额:
    $ 104.82万
  • 项目类别:
    Continuing Grant
MLIAM: MUCHMORE: Multilingual Concept Hierarchies for Medical Information Organization and Retrieval
MLIAM:MUCHMORE:医疗信息组织和检索的多语言概念层次结构
  • 批准号:
    9982226
  • 财政年份:
    2000
  • 资助金额:
    $ 104.82万
  • 项目类别:
    Continuing Grant
STIMULATE: Generalized Example-Based Machine Translation
STIMULATE:广义的基于示例的机器翻译
  • 批准号:
    9618941
  • 财政年份:
    1997
  • 资助金额:
    $ 104.82万
  • 项目类别:
    Continuing Grant
Multitext Fusion, Tracking and Trend Detection
多文本融合、跟踪和趋势检测
  • 批准号:
    9314992
  • 财政年份:
    1994
  • 资助金额:
    $ 104.82万
  • 项目类别:
    Continuing Grant
Learning by Abstraction and Analogy: Acquiring Planning Expertise in Complex Domains
通过抽象和类比学习:获得复杂领域的规划专业知识
  • 批准号:
    9022499
  • 财政年份:
    1991
  • 资助金额:
    $ 104.82万
  • 项目类别:
    Continuing Grant
Machine Translation Summit
机器翻译峰会
  • 批准号:
    9100341
  • 财政年份:
    1991
  • 资助金额:
    $ 104.82万
  • 项目类别:
    Standard Grant
US Japan AI Syposium (Computer and Information Science)
美日人工智能研讨会(计算机与信息科学)
  • 批准号:
    8800097
  • 财政年份:
    1987
  • 资助金额:
    $ 104.82万
  • 项目类别:
    Standard Grant

相似海外基金

HCC: Medium: Optimizing Interactive Machine Learning Tools to Support Plant Scientists using Human Centered Design
HCC:中:优化交互式机器学习工具以支持植物科学家使用以人为本的设计
  • 批准号:
    2312643
  • 财政年份:
    2023
  • 资助金额:
    $ 104.82万
  • 项目类别:
    Standard Grant
III: Medium: CARE: Interactive Systems for Scalable, Causal Data Science
III:媒介:CARE:可扩展因果数据科学的交互式系统
  • 批准号:
    2312561
  • 财政年份:
    2023
  • 资助金额:
    $ 104.82万
  • 项目类别:
    Continuing Grant
Interactive assistance via eHealth for small and medium-sized enterprises' employer and health care manager teams on tobacco control
通过电子健康为中小企业雇主和医疗保健经理团队提供控烟互动协助
  • 批准号:
    22H03326
  • 财政年份:
    2022
  • 资助金额:
    $ 104.82万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
III: Medium: VOCAL: Video Organization and Interactive Compositional AnaLytics
III:媒介:声乐:视频组织和交互式构图分析
  • 批准号:
    2211133
  • 财政年份:
    2022
  • 资助金额:
    $ 104.82万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Responsive Parallelism for Interactive Applications: Theory and Practice
协作研究:SHF:媒介:交互式应用程序的响应式并行性:理论与实践
  • 批准号:
    2107280
  • 财政年份:
    2021
  • 资助金额:
    $ 104.82万
  • 项目类别:
    Continuing Grant
Collaborative Research: CNS CORE: Medium: A Unified Prefetch Framework for Approximation Tolerant Interactive Applications
协作研究:CNS CORE:Medium:用于近似容忍交互式应用程序的统一预取框架
  • 批准号:
    2106197
  • 财政年份:
    2021
  • 资助金额:
    $ 104.82万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Medium: A Unified Prefetch Framework for Approximation-Tolerant Interactive Applications
合作研究:CNS Core:Medium:用于近似容忍交互式应用程序的统一预取框架
  • 批准号:
    2140552
  • 财政年份:
    2021
  • 资助金额:
    $ 104.82万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Responsive Parallelism for Interactive Applications: Theory and Practice
协作研究:SHF:媒介:交互式应用程序的响应式并行性:理论与实践
  • 批准号:
    2107289
  • 财政年份:
    2021
  • 资助金额:
    $ 104.82万
  • 项目类别:
    Continuing Grant
Collaborative Research: CNS Core: Medium: A Unified Prefetch Framework for Approximation-Tolerant Interactive Applications
合作研究:CNS Core:Medium:用于近似容忍交互式应用程序的统一预取框架
  • 批准号:
    2105773
  • 财政年份:
    2021
  • 资助金额:
    $ 104.82万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Responsive Parallelism for Interactive Applications: Theory and Practice
协作研究:SHF:媒介:交互式应用程序的响应式并行性:理论与实践
  • 批准号:
    2107241
  • 财政年份:
    2021
  • 资助金额:
    $ 104.82万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了