RI: Medium: Collaborative Research: Learning Representations of Language for Domain Adaptation

RI:媒介:协作研究:学习领域适应的语言表示

基本信息

  • 批准号:
    1065397
  • 负责人:
  • 金额:
    $ 69.8万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-04-01 至 2016-03-31
  • 项目状态:
    已结题

项目摘要

Supervised Natural Language Processing (NLP) systems perform poorly on domains and vocabulary that differ from training texts. A growing body of empirical and theoretical work points to the features used by traditional NLP systems as the culprit for domain-dependence and for the inability to generalize to previously unseen words. This project is the first to systematically investigate representation-learning as a technique for improving performance on domain adaptation. It explores latent-variable language models ? including Factorial Hidden Markov Models, dependency parsing models, and deep architectures ? as techniques for extracting novel features from text. The resulting representations yield similar features for distributionally-similar words, thereby allowing generalization to words not seen during training of a classifier. The project also explores novel procedures for training a language model, which incorporate Web-scale ngram statistics as substitutes for standard statistics used in unsupervised training.Language users are extraordinarily inventive, and new domains of discourse appear constantly, such as in specialized areas of science and technology. By building on top of the representations produced by this project, NLP systems can improve in accuracy on new domains and on Web text, bringing applications like the Semantic Web closer to reality. For resource-poor languages and domains, the project can help reduce the cost of annotating texts by reducing the need for broad coverage in the training texts. By involving the diverse student bodies at Temple University and Philadelphia-area high schools, the project helps to broaden participation in computer science research by underrepresented groups.
有监督的自然语言处理(NLP)系统在与训练文本不同的领域和词汇上表现不佳。 越来越多的经验和理论工作指出,传统NLP系统所使用的特征是领域依赖性和无法推广到以前看不见的单词的罪魁祸首。这个项目是第一个系统地研究表征学习作为一种技术,以提高性能的域适应。 它探索潜在变量语言模型?包括阶乘隐马尔可夫模型,依赖解析模型,和深层架构?作为从文本中提取新颖特征的技术。 所得到的表示为分布相似的单词产生相似的特征,从而允许泛化到在分类器的训练期间未看到的单词。 该项目还探索了用于训练语言模型的新程序,其中包含Web规模的ngram统计数据,作为无监督训练中使用的标准统计数据的替代品。语言用户非常具有创造性,并且新的话语领域不断出现,例如在科学和技术的专业领域。 通过建立在该项目产生的表示之上,NLP系统可以提高新领域和Web文本的准确性,使语义Web等应用程序更接近现实。 对于资源匮乏的语言和领域,该项目可以通过减少培训文本中广泛覆盖的需求来帮助降低注释文本的成本。 通过让坦普尔大学和费城地区高中的不同学生团体参与进来,该项目有助于扩大代表性不足的群体对计算机科学研究的参与。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alexander Yates其他文献

Special issue “Understanding phreatic eruptions - recent observations of Kusatsu-Shirane volcano and equivalents -”
特刊“了解潜水喷发 - 草津白根火山和类似火山的最新观察 -”
  • DOI:
    10.1007/s00445-022-01571-7
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Yasuo Ogawa;Takeshi Ohba;Tobias P. Fischer;Mare Yamamoto;Art Jolly;C. Caudron;T. Girona;Bruce Christenson;Martha Kane Savage;Roberto Carniel;Thomas Lecocq;Ben Kennedy;I. Lokmer;Alexander Yates;I. Hamling;Iseul Park;G. Kilgour;A. Mazot;K. Ueki;M. Inui;Kenta Matsunaga;N. Okamoto;Kazuki Oshio;A. Kurokawa;Mie Ichihara;Taishi Yamada;Akihiko Terada;W. Kanda;Hideki Ueda;Hiroshi Aoyama;T. Ohkura;T. Tanada;K. Mannen;Y. Abe;Yasushi Daita;R. Doke;M. Harada;George Kikugawa;Naoki Honma;Yuji Miyashita;Y. Yukutake;Muga Yaguchi;U. Tsunogai;Masanori Ito;Ryo Shingubara;D. Rouwet;R. Mora;C. Ramírez;G. González;E. Baldoni;G. Pecoraino;S. Inguaggiato;B. Capaccioni;F. Lucchi;C. Tranne;M. Ichiki;Toshiki Kaida;T. Nakayama;Satoshi Miura;Y. Morita;M. Uyeshima;T. Tsutsui;S. Onizawa;H. Munekane;K. Kataoka;K. Tsunematsu;Takane Matsumoto;A. Urabe;K. Kawashima;Y. Himematsu;T. Ozawa;Yosuke Aoki;I. Melchor;J. Almendros;K. Konstantinou;Marcia Hantusch;A. Caselli;Kuo Hsuan;Yasuo Tseng;Ogawa;Sabri Bülent Tank Nurhasan;N. Ujihara;Y. Honkura;Y. Usui;Dan Muramatsu;Takeshi Matsushima;Eiichi Sato;T. Koyama;M. Utsugi;T. Kaneko;T. Ohminato;Atsushi Watanabe;Hiroshi Tsuji;Taro Nishimoto;Alexey Kuvshinov;Yoshiaki Honda;Nobuko Kametani;Yasuo Ishizaki;Mitsuhiro Yoshimoto;F. Maeno;R. Furukawa;Ryo Honda;Y. Ishizuka;J. Komori;Masashi Nagai;S. Takarada
  • 通讯作者:
    S. Takarada
Monitoring underwater volcano degassing using fiber-optic sensing
使用光纤传感监测水下火山排气
  • DOI:
    10.1038/s41598-024-53444-y
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    C. Caudron;Yaolin Miao;Z. Spica;C. Wollin;Christian Haberland;Philippe Jousset;Alexander Yates;Jean Vandemeulebrouck;Bernd Schmidt;Charlotte Krawczyk;Torsten Dahm
  • 通讯作者:
    Torsten Dahm

Alexander Yates的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alexander Yates', 18)}}的其他基金

RI: Small: Learning Open Domain Semantic Parsers
RI:小型:学习开放域语义解析器
  • 批准号:
    1218692
  • 财政年份:
    2012
  • 资助金额:
    $ 69.8万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
  • 批准号:
    2312841
  • 财政年份:
    2023
  • 资助金额:
    $ 69.8万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
  • 批准号:
    2312842
  • 财政年份:
    2023
  • 资助金额:
    $ 69.8万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Lie group representation learning for vision
协作研究:RI:中:视觉的李群表示学习
  • 批准号:
    2313151
  • 财政年份:
    2023
  • 资助金额:
    $ 69.8万
  • 项目类别:
    Continuing Grant
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
  • 批准号:
    2312840
  • 财政年份:
    2023
  • 资助金额:
    $ 69.8万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Lie group representation learning for vision
协作研究:RI:中:视觉的李群表示学习
  • 批准号:
    2313149
  • 财政年份:
    2023
  • 资助金额:
    $ 69.8万
  • 项目类别:
    Continuing Grant
Collaborative Research: CompCog: RI: Medium: Understanding human planning through AI-assisted analysis of a massive chess dataset
合作研究:CompCog:RI:中:通过人工智能辅助分析海量国际象棋数据集了解人类规划
  • 批准号:
    2312374
  • 财政年份:
    2023
  • 资助金额:
    $ 69.8万
  • 项目类别:
    Standard Grant
Collaborative Research: CompCog: RI: Medium: Understanding human planning through AI-assisted analysis of a massive chess dataset
合作研究:CompCog:RI:中:通过人工智能辅助分析海量国际象棋数据集了解人类规划
  • 批准号:
    2312373
  • 财政年份:
    2023
  • 资助金额:
    $ 69.8万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Superhuman Imitation Learning from Heterogeneous Demonstrations
合作研究:RI:媒介:异质演示中的超人模仿学习
  • 批准号:
    2312955
  • 财政年份:
    2023
  • 资助金额:
    $ 69.8万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Informed, Fair, Efficient, and Incentive-Aware Group Decision Making
协作研究:RI:媒介:知情、公平、高效和具有激励意识的群体决策
  • 批准号:
    2313137
  • 财政年份:
    2023
  • 资助金额:
    $ 69.8万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Lie group representation learning for vision
协作研究:RI:中:视觉的李群表示学习
  • 批准号:
    2313150
  • 财政年份:
    2023
  • 资助金额:
    $ 69.8万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了