FRG: Collaborative Research: The topology and invariants of smooth 4-manifolds

FRG:协作研究:光滑4流形的拓扑和不变量

基本信息

  • 批准号:
    1065827
  • 负责人:
  • 金额:
    $ 16.65万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-09-01 至 2016-08-31
  • 项目状态:
    已结题

项目摘要

This collaborative project will study the topology of smooth 4-dimensional manifolds, in connection with well-known problems in low-dimensional topology. We will focus on the construction of new smooth manifolds with symplectic structures, including Stein manifolds and symplectic fillings of certain contact 3-manifolds. Recent advances in techniques based on knot surgery and Luttinger surgery for creating exotic manifolds with small Euler characteristic will be coupled with computations of gauge-theoretic and symplectic invariants. We will make use of 4-dimensional handlebody techniques in these constructions, with an organizing principle being the search for 'corks' and 'plugs' as a technique for changing the smooth structure. Techniques of gauge theory and symplectic geometry will be used to investigate the classification of symplectic 4-manifolds and their symmetry groups.The physical world of space and time is a 4-dimensional space whose local structure is well understood but whose large-scale (or topological) properties remain mysterious. This Focused Research Group will explore the global topology of 4-dimensional spaces, with a goal of understanding what kinds of spaces (called 4-dimensional manifolds) can exist as mathematical objects, and what the properties of such manifolds are. Of particular interest will be the problem of existence and uniqueness of symplectic structures, as well as that of determining the symmetries of a given manifold. The group will investigate how subtle changes in the smooth structure of a manifold can be achieved by gluing together pieces of different manifolds. Such changes will be detected by combining expertise from several disciplines, including powerful techniques derived from gauge theories of mathematical physics.
这个合作项目将研究光滑四维流形的拓扑结构,与低维拓扑结构中的著名问题有关。 我们将着重于构造新的具有辛结构的光滑流形,包括Stein流形和某些切触3-流形的辛填充。 最近的技术进展的基础上结手术和Luttinger手术创造异国情调的流形与小欧拉特征将与规范理论和辛不变量的计算。 我们将在这些结构中使用四维的立体技术,组织原则是寻找“软木塞”和“塞子”,作为改变光滑结构的技术。规范理论和辛几何的技巧将被用来研究辛4-流形的分类和它们的对称群。空间和时间的物理世界是一个4维空间,它的局部结构是很好的理解,但它的大尺度(或拓扑)性质仍然是神秘的。这个重点研究小组将探索四维空间的全局拓扑,目的是了解什么样的空间(称为四维流形)可以作为数学对象存在,以及这些流形的属性是什么。特别感兴趣的是辛结构的存在性和唯一性问题,以及确定给定流形的对称性问题。该小组将研究如何通过将不同流形的碎片粘合在一起来实现流形光滑结构的微妙变化。这种变化将通过结合几个学科的专业知识来检测,包括来自数学物理规范理论的强大技术。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Daniel Ruberman其他文献

Relations among Donaldson invariants arising from negative $2$-spheres and tori
由负 2 美元球体和环面引起的唐纳森不变量之间的关系
  • DOI:
  • 发表时间:
    1996
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Daniel Ruberman
  • 通讯作者:
    Daniel Ruberman
Mutation and gauge theory I: Yang-Mills invariants
变异与规范理论 I:Yang-Mills 不变量
Rohlin’s invariant and gauge theory, I. Homology 3-tori
Rohlin 不变量和规范理论,I. 同调 3-环
  • DOI:
    10.2140/gt.2005.9.2079
  • 发表时间:
    2003
  • 期刊:
  • 影响因子:
    0.9
  • 作者:
    Daniel Ruberman;N. Saveliev
  • 通讯作者:
    N. Saveliev
Positive scalar curvature, diffeomorphisms and the Seiberg-Witten invariants
正标量曲率、微分同胚和 Seiberg-Witten 不变量
  • DOI:
    10.2140/gt.2001.5.895
  • 发表时间:
    2001
  • 期刊:
  • 影响因子:
    2
  • 作者:
    Daniel Ruberman
  • 通讯作者:
    Daniel Ruberman
Null-Homotopic Embedded Spheres of Codimension One
余维一的零同伦嵌入球
  • DOI:
  • 发表时间:
    1997
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Daniel Ruberman
  • 通讯作者:
    Daniel Ruberman

Daniel Ruberman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Daniel Ruberman', 18)}}的其他基金

FRG: Collaborative Research in Gauge Theory
FRG:规范理论的合作研究
  • 批准号:
    1952790
  • 财政年份:
    2020
  • 资助金额:
    $ 16.65万
  • 项目类别:
    Standard Grant
Applications of Gauge Theory and Floer Homology to Low-Dimensional Topology
规范理论和Floer同调在低维拓扑中的应用
  • 批准号:
    1811111
  • 财政年份:
    2018
  • 资助金额:
    $ 16.65万
  • 项目类别:
    Continuing Grant
Gauge theory and Floer homology in low-dimensional topology
低维拓扑中的规范理论和Floer同调
  • 批准号:
    1506328
  • 财政年份:
    2015
  • 资助金额:
    $ 16.65万
  • 项目类别:
    Standard Grant
Analytical and geometric methods in low-dimensional topology
低维拓扑中的解析和几何方法
  • 批准号:
    1105234
  • 财政年份:
    2011
  • 资助金额:
    $ 16.65万
  • 项目类别:
    Standard Grant
Knot concordance, periodic ends, and Rohlin's invariant
结索引、周期末端和罗林不变量
  • 批准号:
    0804760
  • 财政年份:
    2008
  • 资助金额:
    $ 16.65万
  • 项目类别:
    Standard Grant
Knot concordance: Fifty years since Fox and Milnor, June 2008
Knot 索引:Fox 和 Milnor 五十年,2008 年 6 月
  • 批准号:
    0813619
  • 财政年份:
    2008
  • 资助金额:
    $ 16.65万
  • 项目类别:
    Standard Grant
Gauge theory, homology cobordisms, and Rohlin's invariant
规范场论、同调配边主义和罗林不变量
  • 批准号:
    0505605
  • 财政年份:
    2005
  • 资助金额:
    $ 16.65万
  • 项目类别:
    Standard Grant
Geometry and Topology of Knots and Manifolds
结和流形的几何和拓扑
  • 批准号:
    0204386
  • 财政年份:
    2002
  • 资助金额:
    $ 16.65万
  • 项目类别:
    Standard Grant
Mathematical Sciences Postdoctoral Research Fellowship
数学科学博士后研究奖学金
  • 批准号:
    8705853
  • 财政年份:
    1987
  • 资助金额:
    $ 16.65万
  • 项目类别:
    Fellowship Award
Mathematical Sciences: Knot Theory and Imbeddings of Manifolds
数学科学:纽结理论和流形嵌入
  • 批准号:
    8302072
  • 财政年份:
    1983
  • 资助金额:
    $ 16.65万
  • 项目类别:
    Standard Grant

相似海外基金

FRG: Collaborative Research: New birational invariants
FRG:协作研究:新的双有理不变量
  • 批准号:
    2244978
  • 财政年份:
    2023
  • 资助金额:
    $ 16.65万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2245017
  • 财政年份:
    2023
  • 资助金额:
    $ 16.65万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245111
  • 财政年份:
    2023
  • 资助金额:
    $ 16.65万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245077
  • 财政年份:
    2023
  • 资助金额:
    $ 16.65万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2244879
  • 财政年份:
    2023
  • 资助金额:
    $ 16.65万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: New Birational Invariants
FRG:合作研究:新的双理性不变量
  • 批准号:
    2245171
  • 财政年份:
    2023
  • 资助金额:
    $ 16.65万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2403764
  • 财政年份:
    2023
  • 资助金额:
    $ 16.65万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2245021
  • 财政年份:
    2023
  • 资助金额:
    $ 16.65万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245097
  • 财政年份:
    2023
  • 资助金额:
    $ 16.65万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245147
  • 财政年份:
    2023
  • 资助金额:
    $ 16.65万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了