FRG: Collaborative Research in Gauge Theory

FRG:规范理论的合作研究

基本信息

  • 批准号:
    1952790
  • 负责人:
  • 金额:
    $ 21.69万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-06-01 至 2025-05-31
  • 项目状态:
    未结题

项目摘要

Understanding of the structure of the four-dimensional universe in which we live is a key topic of investigation in modern mathematics and physics. Gauge theory is a crucial tool for the study of the mathematical structures that provide the context for standard models of the physical world. The research supported by this project will develop new mathematical tools and theories that will help test such models and advance our understanding of four-dimensional spaces. A key mathematical idea is the interaction between three-dimensional theories known as Floer theories and the study of invariants of four-dimensional spaces. In addition the project provides research training opportunities for graduate students.This project will develop and extend invariants including abelian gauge theoretic models, cobordism invariants arising from the critical values of Morse like functions such as Daemi's Gamma invariant, equivariant extensions such as equivariant singular instanton knot homology, and new parameterized invariants that combine Konno adjunction-style complexes with homotopy invariants of families. It will also translate structures uncovered in some gauge theory packages to other packages, for example translating L-space notions from Heegaard Floer theory to analogues in the instanton case, or equivariant structures from the Seiberg-Witten Floer theory to the Heegaard Floer theory. Topological applications will include new insights into knot concordance, homology cobordism, diffeomorphism groups of 4-manifolds, and SU(2) representations of 3-manifold groups.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
理解我们所生活的四维宇宙的结构是现代数学和物理学研究的一个关键课题。规范理论是研究为物理世界的标准模型提供背景的数学结构的重要工具。该项目支持的研究将开发新的数学工具和理论,这将有助于测试这些模型,并促进我们对四维空间的理解。一个关键的数学思想是被称为弗洛尔理论的三维理论和四维空间不变量的研究之间的相互作用。此外,该项目还为研究生提供研究培训机会。该项目将开发和扩展不变量,包括阿贝尔规范理论模型,从莫尔斯样函数的临界值产生的协边不变量,如Daemi的Gamma不变量,等变扩展,如等变奇异瞬子结同源,以及新的参数化不变量,联合收割机Konno复形与同伦不变量的家庭。它还将把一些规范理论包中发现的结构翻译成其他包,例如将Heegaard Floer理论中的L空间概念翻译成瞬子情况下的类似物,或者将Seiberg-Witten Floer理论中的等变结构翻译成Heegaard Floer理论。拓扑应用将包括新的见解结一致性,同源协边,4-流形的同构群,和SU(2)表示的3-流形groups.This奖项反映了NSF的法定使命,并已被认为是值得通过评估使用基金会的智力价值和更广泛的影响审查标准的支持。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On the Thom Conjecture in CP^3
论CP^3中的汤姆猜想
Applications of Instanton Floer Homology
Instanton Floer同调的应用
Isotopy of surfaces in 4-manifolds after a single stabilization
单次稳定后 4 流形中表面的同位素
  • DOI:
    10.1016/j.aim.2018.10.040
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Auckly, Dave;Kim, Hee Jung;Melvin, Paul;Ruberman, Daniel;Schwartz, Hannah
  • 通讯作者:
    Schwartz, Hannah
A Levine–Tristram invariant for knottedtori
结节的莱文-崔斯特瑞姆不变量
  • DOI:
    10.2140/agt.2022.22.2395
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0.7
  • 作者:
    Ruberman, Daniel
  • 通讯作者:
    Ruberman, Daniel
On the monopole Lefschetz number of finite-order diffeomorphisms
有限阶微分同胚的单极 Lefschetz 数
  • DOI:
    10.2140/gt.2021.25.3591
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    2
  • 作者:
    Lin, Jianfeng;Ruberman, Daniel;Saveliev, Nikolai
  • 通讯作者:
    Saveliev, Nikolai
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Daniel Ruberman其他文献

Relations among Donaldson invariants arising from negative $2$-spheres and tori
由负 2 美元球体和环面引起的唐纳森不变量之间的关系
  • DOI:
  • 发表时间:
    1996
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Daniel Ruberman
  • 通讯作者:
    Daniel Ruberman
Mutation and gauge theory I: Yang-Mills invariants
变异与规范理论 I:Yang-Mills 不变量
Rohlin’s invariant and gauge theory, I. Homology 3-tori
Rohlin 不变量和规范理论,I. 同调 3-环
  • DOI:
    10.2140/gt.2005.9.2079
  • 发表时间:
    2003
  • 期刊:
  • 影响因子:
    0.9
  • 作者:
    Daniel Ruberman;N. Saveliev
  • 通讯作者:
    N. Saveliev
Positive scalar curvature, diffeomorphisms and the Seiberg-Witten invariants
正标量曲率、微分同胚和 Seiberg-Witten 不变量
  • DOI:
    10.2140/gt.2001.5.895
  • 发表时间:
    2001
  • 期刊:
  • 影响因子:
    2
  • 作者:
    Daniel Ruberman
  • 通讯作者:
    Daniel Ruberman
Null-Homotopic Embedded Spheres of Codimension One
余维一的零同伦嵌入球
  • DOI:
  • 发表时间:
    1997
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Daniel Ruberman
  • 通讯作者:
    Daniel Ruberman

Daniel Ruberman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Daniel Ruberman', 18)}}的其他基金

Applications of Gauge Theory and Floer Homology to Low-Dimensional Topology
规范理论和Floer同调在低维拓扑中的应用
  • 批准号:
    1811111
  • 财政年份:
    2018
  • 资助金额:
    $ 21.69万
  • 项目类别:
    Continuing Grant
Gauge theory and Floer homology in low-dimensional topology
低维拓扑中的规范理论和Floer同调
  • 批准号:
    1506328
  • 财政年份:
    2015
  • 资助金额:
    $ 21.69万
  • 项目类别:
    Standard Grant
Analytical and geometric methods in low-dimensional topology
低维拓扑中的解析和几何方法
  • 批准号:
    1105234
  • 财政年份:
    2011
  • 资助金额:
    $ 21.69万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: The topology and invariants of smooth 4-manifolds
FRG:协作研究:光滑4流形的拓扑和不变量
  • 批准号:
    1065827
  • 财政年份:
    2011
  • 资助金额:
    $ 21.69万
  • 项目类别:
    Standard Grant
Knot concordance, periodic ends, and Rohlin's invariant
结索引、周期末端和罗林不变量
  • 批准号:
    0804760
  • 财政年份:
    2008
  • 资助金额:
    $ 21.69万
  • 项目类别:
    Standard Grant
Knot concordance: Fifty years since Fox and Milnor, June 2008
Knot 索引:Fox 和 Milnor 五十年,2008 年 6 月
  • 批准号:
    0813619
  • 财政年份:
    2008
  • 资助金额:
    $ 21.69万
  • 项目类别:
    Standard Grant
Gauge theory, homology cobordisms, and Rohlin's invariant
规范场论、同调配边主义和罗林不变量
  • 批准号:
    0505605
  • 财政年份:
    2005
  • 资助金额:
    $ 21.69万
  • 项目类别:
    Standard Grant
Geometry and Topology of Knots and Manifolds
结和流形的几何和拓扑
  • 批准号:
    0204386
  • 财政年份:
    2002
  • 资助金额:
    $ 21.69万
  • 项目类别:
    Standard Grant
Mathematical Sciences Postdoctoral Research Fellowship
数学科学博士后研究奖学金
  • 批准号:
    8705853
  • 财政年份:
    1987
  • 资助金额:
    $ 21.69万
  • 项目类别:
    Fellowship Award
Mathematical Sciences: Knot Theory and Imbeddings of Manifolds
数学科学:纽结理论和流形嵌入
  • 批准号:
    8302072
  • 财政年份:
    1983
  • 资助金额:
    $ 21.69万
  • 项目类别:
    Standard Grant

相似海外基金

FRG: Collaborative Research: New birational invariants
FRG:协作研究:新的双有理不变量
  • 批准号:
    2244978
  • 财政年份:
    2023
  • 资助金额:
    $ 21.69万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2245017
  • 财政年份:
    2023
  • 资助金额:
    $ 21.69万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245111
  • 财政年份:
    2023
  • 资助金额:
    $ 21.69万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245077
  • 财政年份:
    2023
  • 资助金额:
    $ 21.69万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2244879
  • 财政年份:
    2023
  • 资助金额:
    $ 21.69万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: New Birational Invariants
FRG:合作研究:新的双理性不变量
  • 批准号:
    2245171
  • 财政年份:
    2023
  • 资助金额:
    $ 21.69万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2403764
  • 财政年份:
    2023
  • 资助金额:
    $ 21.69万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2245021
  • 财政年份:
    2023
  • 资助金额:
    $ 21.69万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245097
  • 财政年份:
    2023
  • 资助金额:
    $ 21.69万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245147
  • 财政年份:
    2023
  • 资助金额:
    $ 21.69万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了