Elucidation of Membrane Fusion Mechanisms Using a Combined Simulation and Experimental Approach

使用模拟和实验相结合的方法阐明膜融合机制

基本信息

  • 批准号:
    1066661
  • 负责人:
  • 金额:
    $ 33万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-09-01 至 2016-08-31
  • 项目状态:
    已结题

项目摘要

1066661PotoffIntellectual Merit: The defining step in evolution of life was the encapsulation of bio-molecules within a lipid membrane. However, to grow, heal, divide, transport, and secrete, cellular membranes need to undergo fission and fusion. Fundamental life processes such as neurotransmission, or the secretion of hormones and enzymes, require membrane fusion. Therefore, understanding the molecular mechanism of membrane fusion will not only enable an understanding of the above mentioned processes, but help in the design and development of biosensors, drugs to block infections, and the development of treatment technologies for exposure to toxic industrial chemicals. Furthermore, from this understanding of membrane fusion, efficient drug delivery systems could be developed for specialized and targeted delivery, and sustained release. Although distinct membrane proteins, such as tv-SNARE (soluble NSF attachment protein receptor, where NSF = N-ethyl-maleimide-sensitive fusion protein), have been identified to facilitate and confirm specificity to membrane fusion in cells, the chemistry of the process at the atomic level is still unclear. Therefore the overall objective of this work is to understand membrane fusion at the atomic level. Specifically, the PIs seek to identify the mechanism through which Ca2+ triggers the tv-SNARE mediated fusion reaction, and the role of the membrane fusion protein synaptotagmin-I on the regulation of membrane fusion. In this hypothesis driven work, molecular dynamics simulations are used to determine quantitatively how the release of Ca2+ between vesicles alters the interactions between apposed lipid vesicles through the calculation of solvation force, the potential of mean force, interfacial tension and elastic modulus, as a function of [Ca2+], bilayer composition, and temperature. Molecular dynamics simulations are used to investigate the formation of water pores in the presence of a Ca2+ concentration gradient, and the effect of pore formation on the rate of membrane fusion. Molecular dynamics simulations are used to provide insight into the role of synaptotagmin-I on the regulation of membrane fusion. In all cases, complimentary experiments are performed using atomic force microscopy (AFM), optical tweezers, light scattering, zeta potential measurements and x-ray scattering.Novelty of the proposed research: Experiments have been used extensively to study the Ca2+ and membrane fusion protein interactions with lipid vesicles; however, probing specific interactions in dynamic, heterogeneous fluid systems at the atomic level is extremely difficult. As a result, the molecular mechanism of membrane fusion in vivo is still the subject of considerable debate. Molecular simulation provides an alternative means to study complex biological systems at the atomic-level, however, recent simulations of membrane fusion have largely ignored the core machinery responsible for triggering the event: Ca2+ and various membrane proteins, such as tv-SNARE and synaptotagmin-I. The proposed research therefore addresses two key limitations in the field. Simulations are used to study interactions between Ca2+, lipids and membrane fusion proteins, such as synaptotagmin-I and tv-SNARE, with atomic scale resolution not possible with experiments. Broader Impacts: The proposed work is transformative because the fundamental atomic level understanding of the fusion event that we seek will enable the development of a wide range of medical advances, which include smart membrane-based bio-sensors, drug delivery devices and treatment technologies for exposure to toxic industrial chemicals. Improved understanding of membrane fusion, a fundamental life process, will enable advances in a wide array of fields from disease detection to treatment. As part of the proposed work, the PIs will develop courses on molecular simulation and modeling of chemical and biological systems using the OpenCourseWare model. Lecture notes and problem sets will be posted on our group website, while videos of lectures for the entire course will be posted on YouTube. Given the increasing use of simulation in research, the OpenCourseWare model provides an opportunity to reach thousands of students in Chemical Engineering, Physics, Chemistry and the Biomedical Sciences, thereby providing a broad impact. The undergraduate research experience will be used to recruit and mentor students from under-represented groups.
1066661波托夫智力成就:生命进化的决定性步骤是将生物分子封装在脂质膜内。 然而,为了生长、愈合、分裂、运输和分泌,细胞膜需要经历裂变和融合。基本的生命过程,如神经传递,或激素和酶的分泌,需要膜融合。 因此,了解膜融合的分子机制不仅能够理解上述过程,而且有助于设计和开发生物传感器,阻断感染的药物以及开发暴露于有毒工业化学品的治疗技术。 此外,从膜融合的这种理解,可以开发有效的药物递送系统,用于专门的和靶向的递送和持续释放。 虽然不同的膜蛋白,如tv-SNARE(可溶性NSF附着蛋白受体,其中NSF = N-乙基-马来酰亚胺敏感融合蛋白),已被确定为促进和确认细胞膜融合的特异性,但在原子水平上的化学过程仍不清楚。 因此,这项工作的总体目标是在原子水平上理解膜融合。 具体而言,PI试图确定Ca 2+触发tv-SNARE介导的融合反应的机制,以及膜融合蛋白synaptotagmin-I对膜融合调节的作用。 在这个假设驱动的工作中,分子动力学模拟被用来定量地确定如何释放的Ca 2+囊泡之间改变并列脂囊泡之间的相互作用,通过计算的溶剂化力,平均力的潜力,界面张力和弹性模量,作为一个函数的[Ca 2 +],双层组成,和温度。 分子动力学模拟被用来研究在Ca 2+浓度梯度的存在下水孔隙的形成,以及孔隙形成对膜融合速率的影响。 分子动力学模拟被用来提供洞察的作用,突触结合蛋白-I的调节膜融合。 在所有情况下,使用原子力显微镜(AFM),光镊,光散射,zeta电位测量和X-射线scattering.新奇的拟议研究:实验已被广泛用于研究的钙离子和膜融合蛋白与脂质囊泡的相互作用,但是,探测特定的相互作用在动态的,非均匀的流体系统在原子水平上是非常困难的。 因此,在体内膜融合的分子机制仍然是相当大的辩论的主题。分子模拟提供了一种在原子水平上研究复杂生物系统的替代手段,然而,最近的膜融合模拟在很大程度上忽略了负责触发事件的核心机制:Ca 2+和各种膜蛋白,如tv-SNARE和突触结合蛋白-I。 因此,拟议的研究解决了该领域的两个关键限制。 模拟用于研究钙离子,脂质和膜融合蛋白,如synaptotagmin-I和tv-SNARE之间的相互作用,与原子尺度的分辨率不可能与实验。更广泛的影响:拟议的工作是变革性的,因为我们所寻求的对聚变事件的基本原子水平的理解将使广泛的医学进步得以发展,其中包括基于智能膜的生物传感器,药物输送设备和暴露于有毒工业化学品的治疗技术。 对膜融合这一基本生命过程的更好理解,将使从疾病检测到治疗的广泛领域取得进展。 作为拟议工作的一部分,PI将使用开放式课程模型开发化学和生物系统的分子模拟和建模课程。 课堂讲稿和问题集将在我们的小组网站上发布,而整个课程的视频将在YouTube上发布。 鉴于在研究中越来越多地使用模拟,开放式课程模型提供了一个机会,以达到成千上万的学生在化学工程,物理,化学和生物医学科学,从而提供了广泛的影响。 本科生的研究经验将被用来招募和指导学生从代表性不足的群体。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jeffrey Potoff其他文献

Jeffrey Potoff的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jeffrey Potoff', 18)}}的其他基金

Achieving Engagement and Success for Commuter Students in Engineering
实现工程专业通勤学生的参与和成功
  • 批准号:
    1742486
  • 财政年份:
    2018
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
Collaborative Research: NSCI Framework: Software for Building a Community-Based Molecular Modeling Capability Around the Molecular Simulation Design Framework (MoSDeF)
合作研究:NSCI 框架:围绕分子模拟设计框架 (MoSDeF) 构建基于社区的分子建模能力的软件
  • 批准号:
    1835713
  • 财政年份:
    2018
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
SSE: Development of a High-Performance Parallel Gibbs Ensemble Monte Carlo Simulation Engine
SSE:高性能并行吉布斯集成蒙特卡罗仿真引擎的开发
  • 批准号:
    1642406
  • 财政年份:
    2017
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
SI2-SSE: Development of a GPU Accelerated Gibbs Ensemble Monte Carlo Simulation Engine
SI2-SSE:GPU 加速吉布斯集成蒙特卡罗仿真引擎的开发
  • 批准号:
    1148168
  • 财政年份:
    2012
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
Bioengineering and Molecular Simulation of Membrane Fusion Processes and Mechanisms
膜融合过程和机制的生物工程和分子模拟
  • 批准号:
    0730768
  • 财政年份:
    2007
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
Molecular Simulation of Chemical Warfare Agent Adsorption
化学战剂吸附的分子模拟
  • 批准号:
    0522005
  • 财政年份:
    2005
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant

相似海外基金

ELAVL1 role in glioblastoma heterogeneity through intercellular gene transfer mediated by cell fusion and tunneling membrane nanotube formation
ELAVL1通过细胞融合和隧道膜纳米管形成介导的细胞间基因转移在胶质母细胞瘤异质性中的作用
  • 批准号:
    10658226
  • 财政年份:
    2023
  • 资助金额:
    $ 33万
  • 项目类别:
CAREER: The Lassa Virus Fusion Domain - A Cyclic Approach to Revealing the Molecular Chemistry behind Membrane Fusion
职业:拉沙病毒融合域 - 揭示膜融合背后分子化学的循环方法
  • 批准号:
    2238139
  • 财政年份:
    2023
  • 资助金额:
    $ 33万
  • 项目类别:
    Continuing Grant
Advancing our knowledge of viral membrane fusion and of IDP-membrane interactions by ESR
通过 ESR 增进我们对病毒膜融合和 IDP-膜相互作用的了解
  • 批准号:
    10798605
  • 财政年份:
    2023
  • 资助金额:
    $ 33万
  • 项目类别:
Impacts of Adaptive Coronavirus Evolution on Viral Membrane Fusion
冠状病毒适应性进化对病毒膜融合的影响
  • 批准号:
    10727448
  • 财政年份:
    2023
  • 资助金额:
    $ 33万
  • 项目类别:
Advancing our knowledge of viral membrane fusion and of IDP-membrane interactions by ESR
通过 ESR 增进我们对病毒膜融合和 IDP-膜相互作用的了解
  • 批准号:
    10552109
  • 财政年份:
    2023
  • 资助金额:
    $ 33万
  • 项目类别:
Biophysical studies of viral membrane fusion proteins
病毒膜融合蛋白的生物物理学研究
  • 批准号:
    10642837
  • 财政年份:
    2022
  • 资助金额:
    $ 33万
  • 项目类别:
Membrane proteins driving a cell-cell fusion reaction during fertilization
受精过程中驱动细胞-细胞融合反应的膜蛋白
  • 批准号:
    10428846
  • 财政年份:
    2022
  • 资助金额:
    $ 33万
  • 项目类别:
Osteoclast fusion mechanism based on plasma membrane curvature and tension
基于质膜曲率和张力的破骨细胞融合机制
  • 批准号:
    22H02574
  • 财政年份:
    2022
  • 资助金额:
    $ 33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Investigation of the biophysical mechanisms and membrane determinants of respirovirus binding and fusion using artificial lipid membranes and isolated physiological membranes as targets
以人工脂质膜和分离的生理膜为靶标,研究呼吸道病毒结合和融合的生物物理机制和膜决定因素
  • 批准号:
    10513664
  • 财政年份:
    2022
  • 资助金额:
    $ 33万
  • 项目类别:
Membrane proteins driving a cell-cell fusion reaction during fertilization
受精过程中驱动细胞-细胞融合反应的膜蛋白
  • 批准号:
    10598164
  • 财政年份:
    2022
  • 资助金额:
    $ 33万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了