GOALI: Flame-based Synthesis of Metal Nanoparticles at Millisecond Residence Times

GOALI:毫秒停留时间火焰合成金属纳米颗粒

基本信息

  • 批准号:
    1066945
  • 负责人:
  • 金额:
    $ 27.88万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-03-01 至 2014-02-28
  • 项目状态:
    已结题

项目摘要

PI: Swihart, Mark Institution: SUNY at Buffalo Proposal Number: 1066945Title: GOALI: Flame-based Synthesis of Metal Nanoparticles at Millisecond Residence TimesThe PIs plan to apply the combined expertise of their University at Buffalo (SUNY) and Praxair teams to develop a new flame-based process for producing metal nanoparticles. Printed electronics, antimicrobial plastics and other applications of metal nanoparticles are rapidly growing. Currently, these particles are prepared using large quantities of solvents, high-value surfactants and polymers. A gas-phase flame-based process will provide a lower-cost, more environmentally friendly route to these nanomaterials if it can provide sufficient control of size, size distribution, and degree of agglomeration. Most large-scale production of metal oxide nanomaterials (TiO2, ZrO2, etc.) and carbon black is done in flame processes for these reasons. However, this is not the case for most metals, because they oxidize in the flame. The approach pursued here, based on a thermal nozzle technology developed at Praxair, provides the high temperature, short residence time, rapid mixing, and reducing conditions needed for metal nanoparticle production. The nozzle and downstream reactor provide a highly uniform environment for particle growth, improving control of particle size, size distribution, and morphology compared to other gas-phase processes. Most importantly, this approach decouples the precursor chemistry from the flame chemistry, allowing use of precursors such as low-cost aqueous salts that cannot be used in other flame-based methods, and allowing the residence time for particle formation to be controlled independently of the flame dynamics. Specific aims of the proposed research are to:1. Systematically study the effects of key operating parameters on single-component nanoparticle size distribution and morphology, to optimize yield and control particle size distribution.2. Explore production and structure control of multicomponent (alloy and core-shell) nanoparticles, coated metallic nanoparticles, and additional novel nanomaterials including dendritic carbon.3. Develop, validate and apply computational reactor models to understand the physico-chemical basis of the experimental results and enable predictive, rational process improvement.4. Complete a cost analysis and market analysis to identify pathways to commercialization.Intellectual Merit: The intellectual merit of this work derives from the novel adaptation of an existing technology for a promising and very different new purpose. The thermal nozzle reactor is elegant in its simplicity; it merely separates combustion from particle formation by passing the hot combustion products through a converging-diverging nozzle. The resulting hot gas jet provides effective atomization of liquid precursors and extraordinarily fast mixing. Rapid initiation and termination of particle formation (by heating and quenching) are the keys to the production of nanoparticles in the gas phase at high throughput, and this is exactly what this system provides. Moreover, the PIs will investigate the formation of alloy and core-shell particles and novel carbon nanomaterials in this system, potentially generating structures that cannot be obtained by other methods. State-of-the-art aerosol dynamics modeling will be performed in parallel with experiments, providing fundamental insight into the particle formation process. The combined expertise of the UB and Praxair teams is essential to the success of the project.Broader Impacts: The work will lead to development of a new high-throughput low-cost process for the production of metallic nanoparticles. This will have technological impact by lowering costs and expanding the range of application of these materials. Through this work, a Ph.D. student, MS students, and undergraduates will be trained in aerosol synthesis of nanomaterials and develop cross-disciplinary chemistry, materials science, and chemical engineering skills. All participants will benefit from the academic-industrial collaboration. Undergraduates will participate through the NSF REU program, and additional targeted programs such as the McNair Scholars and Louis Stokes Alliance for Minority Participation (LS-AMP) programs. This project will allow the PIs to build on their growing success in recruiting minority participants, and expand it with outreach to high-school students and teachers.Transformative Nature of this Project: This project has potential to transform the way nanoparticles of metals and other non-oxide materials are produced. This is a novel millisecond residence-time reactor for nanomaterials. The impact of this process on nanomaterials processing and aerosol reaction engineering could very well match the impact of other millisecond contact-time reactors (e.g. those developed by Lanny Schmidt et al.) on reaction engineering for reforming and partial oxidation, affecting directions of both scientific research and industrial practice.
主要研究者:Swihart,Mark机构:纽约州立大学布法罗分校提案编号:1066945标题:GOALI:毫秒驻留时间内基于火焰的金属纳米颗粒合成PI计划将其布法罗大学(SUNY)和普莱克斯团队的专业知识结合起来,开发一种新的基于火焰的金属纳米颗粒生产工艺。印刷电子、抗菌塑料和金属纳米颗粒的其他应用正在迅速增长。目前,这些颗粒是使用大量溶剂、高价值表面活性剂和聚合物制备的。如果气相火焰工艺能够充分控制尺寸、尺寸分布和团聚程度,则该工艺将为这些纳米材料提供成本更低、更环保的途径。大多数大规模生产的金属氧化物纳米材料(TiO 2、ZrO 2等)由于这些原因,炭黑在火焰法中制备。然而,对于大多数金属来说,情况并非如此,因为它们在火焰中氧化。这里所追求的方法基于普莱克斯开发的热喷嘴技术,提供了金属纳米颗粒生产所需的高温、短停留时间、快速混合和还原条件。喷嘴和下游反应器为颗粒生长提供了高度均匀的环境,与其他气相工艺相比,改善了对颗粒尺寸、尺寸分布和形态的控制。最重要的是,这种方法将前体化学与火焰化学分开,允许使用前体,例如不能用于其他基于火焰的方法的低成本含水盐,并允许独立于火焰动力学控制颗粒形成的停留时间。本研究的具体目标是:1。系统研究关键操作参数对单组分纳米粒子粒径分布和形貌的影响,优化产率,控制粒径分布.探索多组分(合金和核壳)纳米颗粒、涂层金属纳米颗粒和其他新型纳米材料(包括树枝状碳)的生产和结构控制。3.开发,验证和应用计算反应器模型,以了解实验结果的物理化学基础,并实现预测,合理的工艺改进. 4.完成成本分析和市场分析,以确定商业化的途径。智力价值:这项工作的智力价值来自于对现有技术的新颖适应,用于有前途的和非常不同的新目的。热喷嘴反应器在其简单性方面是优雅的;它仅仅通过使热燃烧产物通过会聚-发散喷嘴来将燃烧与颗粒形成分离。由此产生的热气射流提供了液体前体的有效雾化和非常快速的混合。颗粒形成的快速启动和终止(通过加热和淬火)是在气相中以高通量生产纳米颗粒的关键,而这正是该系统所提供的。此外,PI将研究该系统中合金和核壳颗粒以及新型碳纳米材料的形成,可能产生无法通过其他方法获得的结构。最先进的气溶胶动力学建模将与实验并行进行,为粒子形成过程提供基本的见解。UB和普莱克斯团队的专业知识对项目的成功至关重要。更广泛的影响:这项工作将导致开发一种新的高通量低成本金属纳米颗粒生产工艺。这将通过降低成本和扩大这些材料的应用范围而产生技术影响。通过这项工作,一个博士。学生、硕士生和本科生将接受纳米材料气溶胶合成方面的培训,并发展跨学科的化学、材料科学和化学工程技能。所有参与者都将受益于学术-工业合作。本科生将通过NSF REU计划和其他有针对性的计划,如麦克奈尔学者和路易斯斯托克斯少数民族参与联盟(LS-AMP)计划参与。该项目将使PI在招募少数民族参与者方面取得越来越大的成功,并通过与高中学生和教师的外联来扩大它。该项目的变革性质:该项目有可能改变金属和其他非氧化物材料的纳米颗粒的生产方式。这是一种新型的纳米材料毫秒停留时间反应器。这一过程对纳米材料加工和气溶胶反应工程的影响可以很好地匹配其他毫秒接触时间反应器的影响(例如,兰尼施密特等人开发的反应器)。在重整和部分氧化反应工程中的应用,影响着科学研究和工业实践的方向。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mark Swihart其他文献

On the Fokker–Planck approximation in the kinetic equation of multicomponent classical nucleation theory
  • DOI:
    10.1016/j.physa.2021.126375
  • 发表时间:
    2022-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Yuri S. Djikaev;Eli Ruckenstein;Mark Swihart
  • 通讯作者:
    Mark Swihart
有機分子終端シリコンナノ粒子の合成と可視領域発光
有机分子封端硅纳米颗粒的合成及可见区发射
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    佐藤井一;木村啓作;Mark Swihart
  • 通讯作者:
    Mark Swihart
表面
表面
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    佐藤井一;木村啓作;Mark Swihart
  • 通讯作者:
    Mark Swihart
BIOENGINEERING SILICON QUANTUM DOT THERANOSTICS USING A NETWORK ANALYSIS OF METABOLOMIC AND PROTEOMIC DATA IN CARDIAC ISCHAEMIA
  • DOI:
    10.1016/s0735-1097(12)60454-9
  • 发表时间:
    2012-03-27
  • 期刊:
  • 影响因子:
  • 作者:
    Patrick Gladding;Folarin Erogbogbo;Mark Swihart;Katie Smart;Ralph Stewart;Irene Zeng;Mia Jullig;Katherine Bakeev;Raphael Hu;Stefan Schliebs;Banu Gopalan;Seif El-Jack
  • 通讯作者:
    Seif El-Jack

Mark Swihart的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mark Swihart', 18)}}的其他基金

Planning Grant: Engineering Research Center for Responsive, Efficient, Livable, and Independent Sunlight-enabled Habitats (RELISH)
规划资助:响应、高效、宜居、独立的阳光栖息地工程研究中心(RELISH)
  • 批准号:
    1840467
  • 财政年份:
    2018
  • 资助金额:
    $ 27.88万
  • 项目类别:
    Standard Grant
Manufacturing USA: GOALI: Designing Catalytic Membrane Reactors (CMRs) for Low Temperature CO2 Utilization and Methane Dry Reforming
美国制造:GOALI:设计用于低温二氧化碳利用和甲烷干重整的催化膜反应器 (CMR)
  • 批准号:
    1804996
  • 财政年份:
    2018
  • 资助金额:
    $ 27.88万
  • 项目类别:
    Standard Grant
MRI: Development of an Instrument for Quantitative Characterization of Behavior of Magnetic Particles and Magnetically-Labeled Biomaterials in Emerging Applications
MRI:开发用于定量表征新兴应用中磁性粒子和磁性标记生物材料行为的仪器
  • 批准号:
    1337860
  • 财政年份:
    2013
  • 资助金额:
    $ 27.88万
  • 项目类别:
    Standard Grant
Continuous Production of Semiconductor and Hybrid Nanocrystals by Spray Pyrolysis
通过喷雾热解连续生产半导体和混合纳米晶体
  • 批准号:
    0652042
  • 财政年份:
    2007
  • 资助金额:
    $ 27.88万
  • 项目类别:
    Standard Grant
Third International Symposium on Gas-Phase and Surface Chemistry of Vapor Phase Materials Processing
第三届气相材料加工的气相和表面化学国际研讨会
  • 批准号:
    0610181
  • 财政年份:
    2006
  • 资助金额:
    $ 27.88万
  • 项目类别:
    Standard Grant
Collaborative Research: Detailed Chemical Kinetic Modeling of the Homogeneous Chemical Nucleation of Nanoparticles
合作研究:纳米粒子均质化学成核的详细化学动力学模型
  • 批准号:
    0500249
  • 财政年份:
    2005
  • 资助金额:
    $ 27.88万
  • 项目类别:
    Continuing Grant
REU Site: Transdisciplinary Undergraduate Research Initiative On Nanostructured Semiconductors (TURIONS)
REU 网站:纳米结构半导体跨学科本科生研究计划 (TURIONS)
  • 批准号:
    0243833
  • 财政年份:
    2003
  • 资助金额:
    $ 27.88万
  • 项目类别:
    Continuing Grant
ITR/AP: Collaborative Research - Enabling Microscopic Simulators to Perform System-Level Analysis
ITR/AP:协作研究 - 使微观模拟器能够执行系统级分析
  • 批准号:
    0205201
  • 财政年份:
    2002
  • 资助金额:
    $ 27.88万
  • 项目类别:
    Standard Grant
Detailed Chemical Kinetic Modeling of the Homogeneous Chemical Nucleation of Nanoparticles
纳米颗粒均匀化学成核的详细化学动力学模型
  • 批准号:
    0087315
  • 财政年份:
    2000
  • 资助金额:
    $ 27.88万
  • 项目类别:
    Standard Grant

相似海外基金

Elucidation of Near-wall Combustion Mechanism for New Flame-based Surface Functionalized Process
阐明新型火焰表面功能化工艺的近壁燃烧机制
  • 批准号:
    21H04539
  • 财政年份:
    2021
  • 资助金额:
    $ 27.88万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Laser-based particle counting system for metal flame studies
用于金属火焰研究的激光粒子计数系统
  • 批准号:
    552054-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 27.88万
  • 项目类别:
    University Undergraduate Student Research Awards
Core-shell nanofibrous bio-based flame retardants with reinforcement function
具有增强功能的核壳纳米纤维生物基阻燃剂
  • 批准号:
    DP190102992
  • 财政年份:
    2019
  • 资助金额:
    $ 27.88万
  • 项目类别:
    Discovery Projects
Fabrication of lightweight metallic hollow sphere based on flame-retardant magnesium alloy plates
基于阻燃镁合金板的轻质金属空心球的制备
  • 批准号:
    19H02465
  • 财政年份:
    2019
  • 资助金额:
    $ 27.88万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Foundation of flame synthesis platform based on low Peclet number field
基于低佩克莱特数场的火焰合成平台的建立
  • 批准号:
    19K04246
  • 财政年份:
    2019
  • 资助金额:
    $ 27.88万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
DEVELOPMENTAL TOXICITY OF ORGANOPHOSPHATE-BASED FLAME RETARDANTS
有机磷酸酯阻燃剂的发育毒性
  • 批准号:
    9232896
  • 财政年份:
    2017
  • 资助金额:
    $ 27.88万
  • 项目类别:
DEVELOPMENTAL TOXICITY OF ORGANOPHOSPHATE-BASED FLAME RETARDANTS
有机磷酸酯阻燃剂的发育毒性
  • 批准号:
    10115735
  • 财政年份:
    2017
  • 资助金额:
    $ 27.88万
  • 项目类别:
Exploration of Combustion Control Possibility Based on New Concept of High-Speed Flame Propagation by Vortex Filament Soliton
基于涡丝孤子高速火焰传播新概念的燃烧控制可能性探索
  • 批准号:
    17K06184
  • 财政年份:
    2017
  • 资助金额:
    $ 27.88万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Rekindling the Flame: An Exploration of the Relationship between Health, Identity and Place among Urban First Nations Men.
重燃火焰:城市原住民男性健康、身份和地位之间关系的探索。
  • 批准号:
    364628
  • 财政年份:
    2017
  • 资助金额:
    $ 27.88万
  • 项目类别:
Immunotoxicity of phosphate-based flame retardants via nuclear receptor
磷酸盐阻燃剂通过核受体的免疫毒性
  • 批准号:
    16K00558
  • 财政年份:
    2016
  • 资助金额:
    $ 27.88万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了