Continuous Production of Semiconductor and Hybrid Nanocrystals by Spray Pyrolysis

通过喷雾热解连续生产半导体和混合纳米晶体

基本信息

  • 批准号:
    0652042
  • 负责人:
  • 金额:
    $ 28.01万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-03-15 至 2010-02-28
  • 项目状态:
    已结题

项目摘要

PI: Mark Swihart Institution: SUNY Buffalo Proposal Number: 0652042Title: GOALI: Continuous Production of Semiconductor and Hybrid Nanocrystals by Spray PyrolysisThe PI plans to investigate the possibilities and limitations of spray pyrolysis methods for producing semiconductor and multicomponent nanocrystals of sufficiently small size to exhibit size- and shape-dependent optical and electronic properties. A vast array of potential applications based on these size and shape-tunable properties may be possible, ranging from biological imaging to solar cells and light-emitting diodes. Development of reproducible, controllable, and scalable continuous processes for producing these materials is essential to the realization of these applications. In spray pyrolysis, variants of which will be developed and explored here, a liquid precursor solution is sprayed as a mist of fine droplets (an aerosol) that is heated to induce formation of solid particles. He will study two spray pyrolysis approaches: (1) complete evaporation/vapor phase nucleation mode in which the aerosol serves as a means of delivering high concentrations of moderate volatility precursors into the gas phase, and (2) incomplete evaporation mode with formation of multiple product particles per precursor droplet, in which each aerosol droplet serves as a femtoliter-scale liquid phase reactor that, by virtue of its small size, can be heated or cooled very rapidly and remains uniform in concentration and temperature. The first approach expands on the capabilities of other vapor-phase synthesis approaches by allowing use of lower-volatility and lower-stability precursors than would otherwise be possible. The second approach allows one to extend powerful solution-phase methods to higher temperatures and shorter reaction times than are practical in conventional batch processes in solution.Intellectual Merit: The PI's recent advances in solution phase synthesis of anisotropic and hybrid semiconductor nanocrystals and in spray pyrolysis synthesis of other materials, suggest natural research directions for combining and extending these approaches. This will advance both nanoparticle synthesis capabilities and our understanding of the kinetics of nanocrystal nucleation, growth, and shape evolution. The project goals are to:(1) Establish the extent to which solution-phase methods of producing semiconductor nanocrystals and hybrid nanocrystals can be applied in the vapor-phase via complete evaporation and gas phase reaction of precursors delivered as an aerosol.(2) Demonstrate continuous production of high quality spherical, anisotropic, and hybrid semiconductor nanocrystals within aerosol droplets at higher temperature and shorter reaction times than are feasible in batch solution phase syntheses.(3) Apply principles and tools of chemical reaction engineering to the spray pyrolysis process to investigate the kinetics of nanocrystal nucleation and growth, and to design improved spray pyrolysis processes that produce higher quality nanocrystals.Broader Impact: The proposed work will lead to development of new, continuous, relatively high-throughput processes for the production of semiconductor nanocrystals, particularly anisotropic and hybrid nanocrystals. This will have technological impact by expanding the range of applications for which such semiconductor nanocrystals can be considered. Through this work, two Ph.D. students will be trained in the aerosol synthesis of nanoscale materials and develop cross-disciplinary skills in chemistry, materials science, and chemical engineering. Undergraduates will participate in this project through the NSF REU program, and through additional targeted programs such as the McNair Scholars program and the Louis Stokes Alliance for Minority Participation (LS-AMP) program. The PI's group has had increasing success in recruiting minority participants, and this project will build on this success and expand it with outreach to middle and high-school students and teachers.
PI: Mark Swihart机构:纽约州立大学布法罗分校提案编号:0652042标题:目标ali:通过喷雾热解法连续生产半导体和混合纳米晶体PI计划研究喷雾热解法生产半导体和多组分纳米晶体的可能性和局限性,这些纳米晶体的尺寸足够小,能够表现出与尺寸和形状相关的光学和电子特性。从生物成像到太阳能电池和发光二极管,基于这些尺寸和形状可调特性的大量潜在应用可能成为可能。开发可重复的、可控的、可扩展的生产这些材料的连续过程对于实现这些应用至关重要。在喷雾热解(这里将开发和探索其变体)中,液体前体溶液被喷射成细液滴的雾状(气溶胶),加热以诱导形成固体颗粒。他将研究两种喷雾热解方法:(1)完全蒸发/气相成核模式,气溶胶作为一种将高浓度的中等挥发性前驱体输送到气相的手段;(2)不完全蒸发模式,每个前驱体液滴形成多个产物颗粒,每个气溶胶液滴作为一个飞升级的液相反应器,由于其体积小,可以非常迅速地加热或冷却,并保持浓度和温度均匀。第一种方法扩展了其他气相合成方法的能力,允许使用比其他方法更低挥发性和更低稳定性的前体。第二种方法允许人们将强大的溶液相方法扩展到更高的温度和更短的反应时间,而不是在传统的溶液批处理过程中。智力优势:PI在各向异性和杂化半导体纳米晶体的固相合成以及其他材料的喷雾热解合成方面的最新进展,为这些方法的结合和扩展提供了自然的研究方向。这将提高纳米粒子的合成能力和我们对纳米晶体成核、生长和形状演变动力学的理解。该项目的目标是:(1)通过将前驱体作为气溶胶进行完全蒸发和气相反应,确定生产半导体纳米晶体和混合纳米晶体的溶液相方法在多大程度上可以应用于气相。(2)证明在气溶胶液滴内以更高的温度和更短的反应时间连续生产高质量的球形、各向异性和混合半导体纳米晶体比批量液相合成可行。(3)将化学反应工程的原理和工具应用到喷雾热解过程中,研究纳米晶体成核和生长的动力学,设计改进的喷雾热解工艺,生产出更高质量的纳米晶体。更广泛的影响:提出的工作将导致新的、连续的、相对高通量的半导体纳米晶体生产工艺的发展,特别是各向异性和混合纳米晶体。这将通过扩大半导体纳米晶体可以考虑的应用范围而产生技术影响。通过这项工作,两名博士生将在纳米材料的气溶胶合成方面得到培训,并在化学、材料科学和化学工程方面发展跨学科技能。本科生将通过NSF REU项目,以及其他有针对性的项目,如麦克奈尔学者项目和路易斯·斯托克斯少数民族参与联盟(LS-AMP)项目参与该项目。该项目小组在招募少数族裔参与者方面取得了越来越大的成功,该项目将在这一成功的基础上,将其扩展到初高中学生和教师。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mark Swihart其他文献

On the Fokker–Planck approximation in the kinetic equation of multicomponent classical nucleation theory
  • DOI:
    10.1016/j.physa.2021.126375
  • 发表时间:
    2022-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Yuri S. Djikaev;Eli Ruckenstein;Mark Swihart
  • 通讯作者:
    Mark Swihart
有機分子終端シリコンナノ粒子の合成と可視領域発光
有机分子封端硅纳米颗粒的合成及可见区发射
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    佐藤井一;木村啓作;Mark Swihart
  • 通讯作者:
    Mark Swihart
表面
表面
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    佐藤井一;木村啓作;Mark Swihart
  • 通讯作者:
    Mark Swihart
BIOENGINEERING SILICON QUANTUM DOT THERANOSTICS USING A NETWORK ANALYSIS OF METABOLOMIC AND PROTEOMIC DATA IN CARDIAC ISCHAEMIA
  • DOI:
    10.1016/s0735-1097(12)60454-9
  • 发表时间:
    2012-03-27
  • 期刊:
  • 影响因子:
  • 作者:
    Patrick Gladding;Folarin Erogbogbo;Mark Swihart;Katie Smart;Ralph Stewart;Irene Zeng;Mia Jullig;Katherine Bakeev;Raphael Hu;Stefan Schliebs;Banu Gopalan;Seif El-Jack
  • 通讯作者:
    Seif El-Jack

Mark Swihart的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mark Swihart', 18)}}的其他基金

Planning Grant: Engineering Research Center for Responsive, Efficient, Livable, and Independent Sunlight-enabled Habitats (RELISH)
规划资助:响应、高效、宜居、独立的阳光栖息地工程研究中心(RELISH)
  • 批准号:
    1840467
  • 财政年份:
    2018
  • 资助金额:
    $ 28.01万
  • 项目类别:
    Standard Grant
Manufacturing USA: GOALI: Designing Catalytic Membrane Reactors (CMRs) for Low Temperature CO2 Utilization and Methane Dry Reforming
美国制造:GOALI:设计用于低温二氧化碳利用和甲烷干重整的催化膜反应器 (CMR)
  • 批准号:
    1804996
  • 财政年份:
    2018
  • 资助金额:
    $ 28.01万
  • 项目类别:
    Standard Grant
MRI: Development of an Instrument for Quantitative Characterization of Behavior of Magnetic Particles and Magnetically-Labeled Biomaterials in Emerging Applications
MRI:开发用于定量表征新兴应用中磁性粒子和磁性标记生物材料行为的仪器
  • 批准号:
    1337860
  • 财政年份:
    2013
  • 资助金额:
    $ 28.01万
  • 项目类别:
    Standard Grant
GOALI: Flame-based Synthesis of Metal Nanoparticles at Millisecond Residence Times
GOALI:毫秒停留时间火焰合成金属纳米颗粒
  • 批准号:
    1066945
  • 财政年份:
    2011
  • 资助金额:
    $ 28.01万
  • 项目类别:
    Standard Grant
Third International Symposium on Gas-Phase and Surface Chemistry of Vapor Phase Materials Processing
第三届气相材料加工的气相和表面化学国际研讨会
  • 批准号:
    0610181
  • 财政年份:
    2006
  • 资助金额:
    $ 28.01万
  • 项目类别:
    Standard Grant
Collaborative Research: Detailed Chemical Kinetic Modeling of the Homogeneous Chemical Nucleation of Nanoparticles
合作研究:纳米粒子均质化学成核的详细化学动力学模型
  • 批准号:
    0500249
  • 财政年份:
    2005
  • 资助金额:
    $ 28.01万
  • 项目类别:
    Continuing Grant
REU Site: Transdisciplinary Undergraduate Research Initiative On Nanostructured Semiconductors (TURIONS)
REU 网站:纳米结构半导体跨学科本科生研究计划 (TURIONS)
  • 批准号:
    0243833
  • 财政年份:
    2003
  • 资助金额:
    $ 28.01万
  • 项目类别:
    Continuing Grant
ITR/AP: Collaborative Research - Enabling Microscopic Simulators to Perform System-Level Analysis
ITR/AP:协作研究 - 使微观模拟器能够执行系统级分析
  • 批准号:
    0205201
  • 财政年份:
    2002
  • 资助金额:
    $ 28.01万
  • 项目类别:
    Standard Grant
Detailed Chemical Kinetic Modeling of the Homogeneous Chemical Nucleation of Nanoparticles
纳米颗粒均匀化学成核的详细化学动力学模型
  • 批准号:
    0087315
  • 财政年份:
    2000
  • 资助金额:
    $ 28.01万
  • 项目类别:
    Standard Grant

相似海外基金

GRASP - GREEN AGILE SEMICONDUCTOR PRODUCTION
GRASP - 绿色敏捷半导体生产
  • 批准号:
    10099437
  • 财政年份:
    2024
  • 资助金额:
    $ 28.01万
  • 项目类别:
    EU-Funded
SBIR Phase I: An Artificial Intelligence System to Accelerate Semiconductor Production using Physics-embedded Lithographic Foundation Model
SBIR 第一阶段:使用物理嵌入式光刻基础模型加速半导体生产的人工智能系统
  • 批准号:
    2336079
  • 财政年份:
    2024
  • 资助金额:
    $ 28.01万
  • 项目类别:
    Standard Grant
Concentration of global semiconductor production on South Korea and Taiwan: How and why?
全球半导体生产集中在韩国和台湾:如何以及为何?
  • 批准号:
    23K11595
  • 财政年份:
    2023
  • 资助金额:
    $ 28.01万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Function-integrated resin semiconductor photocatalyst for hydrogen peroxide production from water and dioxygen
用于水和氧气生产过氧化氢的功能集成树脂半导体光催化剂
  • 批准号:
    22H01867
  • 财政年份:
    2022
  • 资助金额:
    $ 28.01万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
PFI-TT: Achieving efficient production of visible light from semiconductor nanocrystals in water
PFI-TT:实现水中半导体纳米晶体高效产生可见光
  • 批准号:
    2147791
  • 财政年份:
    2021
  • 资助金额:
    $ 28.01万
  • 项目类别:
    Standard Grant
PFI-TT: Achieving efficient production of visible light from semiconductor nanocrystals in water
PFI-TT:实现水中半导体纳米晶体高效产生可见光
  • 批准号:
    1941184
  • 财政年份:
    2020
  • 资助金额:
    $ 28.01万
  • 项目类别:
    Standard Grant
Development of in-liquid plasma jet production method and synthesis of diamond semiconductor crystal
液体等离子射流生产方法的开发及金刚石半导体晶体的合成
  • 批准号:
    20K05170
  • 财政年份:
    2020
  • 资助金额:
    $ 28.01万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
SHF: Small: Perception-Based Analytics For Semiconductor Production and Test Data
SHF:小型:针对半导体生产和测试数据的基于感知的分析
  • 批准号:
    2006739
  • 财政年份:
    2020
  • 资助金额:
    $ 28.01万
  • 项目类别:
    Standard Grant
Molecular biology of bacterial chalcogen metabolism and the application to semiconductor nanoparticle production
细菌硫属元素代谢的分子生物学及其在半导体纳米颗粒生产中的应用
  • 批准号:
    18K14373
  • 财政年份:
    2018
  • 资助金额:
    $ 28.01万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Development of high performance resist removal technique using laser irradiation for environmental load reduction in semiconductor production
开发利用激光照射的高性能抗蚀剂去除技术,以减少半导体生产中的环境负荷
  • 批准号:
    18K04273
  • 财政年份:
    2018
  • 资助金额:
    $ 28.01万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了