The Cuntz Semigroup and the Classification of C*-algebras
Cuntz 半群和 C*-代数的分类
基本信息
- 批准号:1067890
- 负责人:
- 金额:$ 8.05万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-03-01 至 2012-02-29
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award provides support to defray expenses of US participants to visit the Centre de Recerca Matematica (CRM) in Barcelona during the program "The Cuntz Semigroup on the Classification of C*-algebras" which is being held in the period January through July 2011. The vast majority of the award funds will provide the opportunity for young US mathematicians, including graduate students and postdoctoral fellows, to attend significant portions of the CRM program. In particular, the award will support the attendance of these young mathematicians at an advanced course entitled "Dynamical Systems, C*-algebras and Classification," which will be held during June 14-23, 2011. The award is co-funded by the Office of International Science and Engineering.The classification of C*-algebras via K-theoretic invariants has recently been invigorated by the discovery that the Cuntz semigroup - roughly, a semigroup of isomorphism classes of countably generated Banach modules over a C*-algebra - contains an enormous amount of information. Explicit calculation of this semigroup has led to classification theorems for C*-algebras of minimal dynamical systems, among others. The connections between classification, C*-algebras, and dynamics have been further strengthened by progress on proving the hyperfiniteness of amenable group actions on the Cantor set. Another new front has opened at the interface of descriptive set theory and operator algebras, where the Borel complexity of various equivalence relations (including, naturally, isomorphism) allows one to quantify the complexity of various classification problems in C*-algebra theory. Thus, the Cuntz semigroup and classification problems in C*-algebra theory form an active and rapidly developing branch of functional analysis, one which will afford many research opportunities. The award provides a very good opportunity for young mathematicians with research interests in the area of C*-algebras to be exposed to the latest developments in the field, to interact with researchers from other countries, and to possibly initiate future collaborations. Among other things, this award will contribute to the future vitality of the field, and hopefully lead to further applications and connections with other areas of mathematics.
该奖项为美国参与者在2011年1月至7月期间访问巴塞罗那数学研究中心(CRM)的“C*-代数分类的Cuntz半群”项目提供资金支持。绝大多数奖金将为年轻的美国数学家提供机会,包括研究生和博士后,参加CRM项目的重要部分。特别值得一提的是,该奖项将支持这些年轻数学家参加一门名为“动力系统,C*-代数和分类”的高级课程,该课程将于2011年6月14日至23日举行。该奖项由国际科学与工程办公室共同资助。通过k理论不变量对C*-代数的分类最近因发现Cuntz半群(大致上是C*-代数上可生成的Banach模的同构类的半群)包含大量信息而活跃起来。这个半群的显式计算导致了最小动力系统C*-代数的分类定理等。在证明Cantor集合上可服从群作用的超有限性方面的进展,进一步加强了分类、C*-代数和动力学之间的联系。另一个新的前沿已经在描述集合论和算子代数的接口上打开,其中各种等价关系(自然包括同构)的Borel复杂性允许人们量化C*-代数理论中各种分类问题的复杂性。因此,C*-代数理论中的Cuntz半群和分类问题形成了泛函分析中一个活跃而迅速发展的分支,将提供许多研究机会。该奖项为对C*-代数领域有研究兴趣的年轻数学家提供了一个很好的机会,可以接触到该领域的最新发展,与来自其他国家的研究人员互动,并可能开始未来的合作。除此之外,该奖项将有助于该领域未来的活力,并有望导致进一步的应用和与其他数学领域的联系。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nathanial Brown其他文献
Nathanial Brown的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nathanial Brown', 18)}}的其他基金
RAPID: Exploring Impacts of the COVID-19 Pandemic on Undergraduate STEM Education by Student Gender, Race/Ethnicity, and Socioeconomic Status
RAPID:按学生性别、种族/民族和社会经济地位探讨 COVID-19 大流行对本科 STEM 教育的影响
- 批准号:
2028344 - 财政年份:2020
- 资助金额:
$ 8.05万 - 项目类别:
Standard Grant
Inclusive Instructor Behaviors in the Calculus Sequence
微积分序列中的包容性教师行为
- 批准号:
1937617 - 财政年份:2019
- 资助金额:
$ 8.05万 - 项目类别:
Standard Grant
U.S. Participation in the ICM Operator Algebras Satellite Conference
美国参加ICM算子代数卫星会议
- 批准号:
1763278 - 财政年份:2018
- 资助金额:
$ 8.05万 - 项目类别:
Standard Grant
U.S. Participation in the Centre de Recerca Matematica Research Program Operator Algebras: Dynamics and Interactions
美国参与 Center de Recerca Matematica 研究计划算子代数:动力学与相互作用
- 批准号:
1665118 - 财政年份:2017
- 资助金额:
$ 8.05万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Noncommutative dimension theories
FRG:协作研究:非交换维度理论
- 批准号:
1564401 - 财政年份:2016
- 资助金额:
$ 8.05万 - 项目类别:
Continuing Grant
Noncommutative dimension theories: connections and applications
非交换维数理论:联系和应用
- 批准号:
1546917 - 财政年份:2015
- 资助金额:
$ 8.05万 - 项目类别:
Standard Grant
Nuclearity, group C*-algebras and II_1 factors
核性、C* 族代数和 II_1 因子
- 批准号:
1201385 - 财政年份:2012
- 资助金额:
$ 8.05万 - 项目类别:
Continuing Grant
Approximation Theory and Operator Algebras
逼近论和算子代数
- 批准号:
0856197 - 财政年份:2009
- 资助金额:
$ 8.05万 - 项目类别:
Continuing Grant
Approximation Theory and C*-algebras
逼近理论和 C* 代数
- 批准号:
0554870 - 财政年份:2006
- 资助金额:
$ 8.05万 - 项目类别:
Standard Grant
Representation Theory and Invariant Means on C*-algebras
C*-代数的表示论和不变均值
- 批准号:
0244807 - 财政年份:2003
- 资助金额:
$ 8.05万 - 项目类别:
Standard Grant
相似海外基金
Weighted semigroup approach for Fokker-Planck-Kolmogorov equations
Fokker-Planck-Kolmogorov 方程的加权半群方法
- 批准号:
517982119 - 财政年份:2023
- 资助金额:
$ 8.05万 - 项目类别:
WBP Fellowship
Application of automata and transducers to computational semigroup theory
自动机和传感器在计算半群论中的应用
- 批准号:
2590267 - 财政年份:2021
- 资助金额:
$ 8.05万 - 项目类别:
Studentship
Zero-dimensional semigroup compactifications of locally compact groups
局部紧群的零维半群紧化
- 批准号:
539121-2019 - 财政年份:2019
- 资助金额:
$ 8.05万 - 项目类别:
University Undergraduate Student Research Awards
Higher Rank Graph Algebras, Multivariate Operator Theory, Free semigroup Algebras, and Functional Equations
高阶图代数、多元算子理论、自由半群代数和函数方程
- 批准号:
358793-2013 - 财政年份:2017
- 资助金额:
$ 8.05万 - 项目类别:
Discovery Grants Program - Individual
Combinatorial theory of semigroup actions
半群作用的组合理论
- 批准号:
1795681 - 财政年份:2016
- 资助金额:
$ 8.05万 - 项目类别:
Studentship
Thermodynamic formalism for conformal semigroup actions
共形半群作用的热力学形式主义
- 批准号:
15H06416 - 财政年份:2015
- 资助金额:
$ 8.05万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Higher Rank Graph Algebras, Multivariate Operator Theory, Free semigroup Algebras, and Functional Equations
高阶图代数、多元算子理论、自由半群代数和函数方程
- 批准号:
358793-2013 - 财政年份:2015
- 资助金额:
$ 8.05万 - 项目类别:
Discovery Grants Program - Individual
Higher Rank Graph Algebras, Multivariate Operator Theory, Free semigroup Algebras, and Functional Equations
高阶图代数、多元算子理论、自由半群代数和函数方程
- 批准号:
358793-2013 - 财政年份:2014
- 资助金额:
$ 8.05万 - 项目类别:
Discovery Grants Program - Individual
Higher Rank Graph Algebras, Multivariate Operator Theory, Free semigroup Algebras, and Functional Equations
高阶图代数、多元算子理论、自由半群代数和函数方程
- 批准号:
358793-2013 - 财政年份:2013
- 资助金额:
$ 8.05万 - 项目类别:
Discovery Grants Program - Individual
The corona factorization property and the Cuntz semigroup in the classification of C*-algebras
C*-代数分类中的电晕分解性质和Cuntz半群
- 批准号:
236576044 - 财政年份:2013
- 资助金额:
$ 8.05万 - 项目类别:
Research Fellowships














{{item.name}}会员




