Approximation Theory and C*-algebras
逼近理论和 C* 代数
基本信息
- 批准号:0554870
- 负责人:
- 金额:$ 14.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-06-15 至 2010-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The investigator will study a number of problems which, roughly speaking, belong to representation theory. The questions, however, differ from the classical theory (e.g. classification of irreducible representations). The goal is to a) better understand finite factor representations of certain quasidiagonal C*-algebras, b) study approximation properties of traces and c) work on applications of the previous two topics to various open questions in operator algebras. At this point, our hope is that this work will shed light on Elliott's classification program and Connes' embedding problem. However, there may be more as we have recently noticed that these ideas have K-homological implications, can be used to prove a general existence result for the finite section method (from numerical analysis) and we would not be surprised if connections with geometric group theory were soon worked out. Though these ideas are certainly in their infancy, they have solid historical foundations (e.g. Connes' uniqueness theorem for finite injective factors) and we believe the theory shows promise. One very successful idea in mathematics is that problems about complicated objects can sometimes be solved using approximations by simpler objects. For example, in calculus we teach students that to compute the area under a curve one should first approximate by rectangles since the area of a rectangle is easy to compute. Operator algebras are (usually) infinite dimensional objects which provide the natural framework for many questions in quantum physics. Moreover, deep and unexpected connections with other areas of mathematics such as geometry, topology and probability were discovered over the years. As such, a solid understanding of the structure of operator algebras is important. The general philosophy of using approximations by simpler objects becomes especially relevant here since the objects of interest are infinite dimensional. The investigator will continue an established tradition of trying to use finite dimensional approximations to better understand some fundamental infinite dimensional objects.
调查人员将研究一些问题,粗略地说,属于表征理论。 然而,这些问题与经典理论不同(例如,不可约表示的分类)。 目标是a)更好地理解某些拟对角C*-代数的有限因子表示,B)研究迹的逼近性质,c)研究前两个主题在算子代数中各种开放问题的应用。 在这一点上,我们希望这项工作将揭示埃利奥特的分类程序和康纳斯的嵌入问题。 然而,可能有更多的,因为我们最近注意到,这些想法有K-同调的影响,可以用来证明一个一般存在的结果有限部分的方法(从数值分析),我们不会感到惊讶,如果连接几何群论很快制定了。 虽然这些想法肯定是在他们的婴儿期,他们有坚实的历史基础(例如Connes'唯一性定理有限内射因子),我们相信该理论显示的承诺。数学中一个非常成功的思想是,复杂物体的问题有时可以用简单物体的近似来解决。 例如,在微积分中,我们教学生计算曲线下的面积,首先应该用矩形近似,因为矩形的面积很容易计算。 算子代数(通常)是无限维的对象,它为量子物理中的许多问题提供了自然的框架。 此外,多年来,人们发现了与其他数学领域(如几何、拓扑和概率)的深刻而意想不到的联系。 因此,对算子代数结构的深入理解是很重要的。 由于感兴趣的对象是无限维的,所以使用较简单对象的近似的一般哲学在这里变得特别相关。 研究人员将继续尝试使用有限维近似更好地理解一些基本的无限维对象的既定传统。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nathanial Brown其他文献
Nathanial Brown的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nathanial Brown', 18)}}的其他基金
RAPID: Exploring Impacts of the COVID-19 Pandemic on Undergraduate STEM Education by Student Gender, Race/Ethnicity, and Socioeconomic Status
RAPID:按学生性别、种族/民族和社会经济地位探讨 COVID-19 大流行对本科 STEM 教育的影响
- 批准号:
2028344 - 财政年份:2020
- 资助金额:
$ 14.75万 - 项目类别:
Standard Grant
Inclusive Instructor Behaviors in the Calculus Sequence
微积分序列中的包容性教师行为
- 批准号:
1937617 - 财政年份:2019
- 资助金额:
$ 14.75万 - 项目类别:
Standard Grant
U.S. Participation in the ICM Operator Algebras Satellite Conference
美国参加ICM算子代数卫星会议
- 批准号:
1763278 - 财政年份:2018
- 资助金额:
$ 14.75万 - 项目类别:
Standard Grant
U.S. Participation in the Centre de Recerca Matematica Research Program Operator Algebras: Dynamics and Interactions
美国参与 Center de Recerca Matematica 研究计划算子代数:动力学与相互作用
- 批准号:
1665118 - 财政年份:2017
- 资助金额:
$ 14.75万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Noncommutative dimension theories
FRG:协作研究:非交换维度理论
- 批准号:
1564401 - 财政年份:2016
- 资助金额:
$ 14.75万 - 项目类别:
Continuing Grant
Noncommutative dimension theories: connections and applications
非交换维数理论:联系和应用
- 批准号:
1546917 - 财政年份:2015
- 资助金额:
$ 14.75万 - 项目类别:
Standard Grant
Nuclearity, group C*-algebras and II_1 factors
核性、C* 族代数和 II_1 因子
- 批准号:
1201385 - 财政年份:2012
- 资助金额:
$ 14.75万 - 项目类别:
Continuing Grant
The Cuntz Semigroup and the Classification of C*-algebras
Cuntz 半群和 C*-代数的分类
- 批准号:
1067890 - 财政年份:2011
- 资助金额:
$ 14.75万 - 项目类别:
Standard Grant
Approximation Theory and Operator Algebras
逼近论和算子代数
- 批准号:
0856197 - 财政年份:2009
- 资助金额:
$ 14.75万 - 项目类别:
Continuing Grant
Representation Theory and Invariant Means on C*-algebras
C*-代数的表示论和不变均值
- 批准号:
0244807 - 财政年份:2003
- 资助金额:
$ 14.75万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
- 批准号:12247163
- 批准年份:2022
- 资助金额:18.00 万元
- 项目类别:专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
- 批准号:12126512
- 批准年份:2021
- 资助金额:12.0 万元
- 项目类别:数学天元基金项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
- 批准号:61671064
- 批准年份:2016
- 资助金额:65.0 万元
- 项目类别:面上项目
相似海外基金
Combinatorial Representation Theory of Quantum Groups and Coinvariant Algebras
量子群与协变代数的组合表示论
- 批准号:
2348843 - 财政年份:2024
- 资助金额:
$ 14.75万 - 项目类别:
Standard Grant
Operator algebras and index theory in quantum walks and quantum information theory
量子行走和量子信息论中的算子代数和索引论
- 批准号:
24K06756 - 财政年份:2024
- 资助金额:
$ 14.75万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Free Information Theory Techniques in von Neumann Algebras
冯诺依曼代数中的自由信息理论技术
- 批准号:
2348633 - 财政年份:2024
- 资助金额:
$ 14.75万 - 项目类别:
Standard Grant
Silting theory of Noetherian algebras and subcategories
诺特代数及其子范畴的淤积理论
- 批准号:
22KJ2611 - 财政年份:2023
- 资助金额:
$ 14.75万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Similarities in representation theory of quantum loop algebras of several types and their developments
几种量子环代数表示论的相似性及其发展
- 批准号:
23K12950 - 财政年份:2023
- 资助金额:
$ 14.75万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
[infinite]-Lie Groups and Their [infinite]-Lie Algebras in Real Cohesive Homotopy Type Theory
实内聚同伦型理论中的[无穷]-李群及其[无穷]-李代数
- 批准号:
2888102 - 财政年份:2023
- 资助金额:
$ 14.75万 - 项目类别:
Studentship
The structure, classification and representation theory of locally extended affine Lie algebras
局部扩展仿射李代数的结构、分类和表示论
- 批准号:
23K03063 - 财政年份:2023
- 资助金额:
$ 14.75万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
K-theory of Operator Algebras and Index Theory on Spaces of Singularities
算子代数的K理论与奇点空间索引论
- 批准号:
2247322 - 财政年份:2023
- 资助金额:
$ 14.75万 - 项目类别:
Continuing Grant
Representation theory of affine Lie algebras and enumerative geometry of sheaves on toric surfaces and threefolds
仿射李代数表示论与复曲面和三重滑轮的枚举几何
- 批准号:
567867-2022 - 财政年份:2022
- 资助金额:
$ 14.75万 - 项目类别:
Postdoctoral Fellowships
New horizons in operator algebras: finite-dimensional approximations and quantized function theory
算子代数的新视野:有限维近似和量化函数理论
- 批准号:
RGPIN-2022-03600 - 财政年份:2022
- 资助金额:
$ 14.75万 - 项目类别:
Discovery Grants Program - Individual