Spectral Theory and Applied Dynamical Systems

谱理论和应用动力系统

基本信息

  • 批准号:
    1067929
  • 负责人:
  • 金额:
    $ 17.79万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-09-01 至 2014-12-31
  • 项目状态:
    已结题

项目摘要

The main objective of this project is to develop specific perturbation methods of operator theory tailored to the study of stability issues of traveling waves and other patterns for partial differential equations arising in applied dynamical systems. The plan is to give applications in such directions as Morse and Maslov indices, multidimensional eigenvalue problems (via the Birman-Schwinger perturbation determinants for the Dirichlet-to-Neumann operators), and the spectral properties of the Evans function. Keldysh' type theorems for operator valued meromorphic functions will be applied to the spectral analysis of the differential operators that appear as linearizations about traveling waves and more complicated multidimensional patterns, using and further developing the freezing method for evolution equations. On the more applied side, the spectral theory of nonselfadjoint differential operators and the Evans function approach, combined with abstract results on spectral properties of strongly continuous (but not analytic) operator semigroups, will be used to discuss nonlinear stability of traveling fronts for concrete physically important models arising in chemical kinetics and combustion theory.The topic of this proposal is situated at the intersection of several areas of applied and pure mathematics. It includes the study of such properties of complex systems described by infinitely many parameters evolving in time as their stability, understood as ability to stay preserved under small perturbations. The main theoretical instrument that will be used and further developed in the course of this project is the theory of determinants of infinite dimensional matrices utilized in quantum mechanics and scattering theory. Combined with the theory generalizing Wronski determinants of differential equations, this will allow us to compute indices indicating the degree of instability of propagating waves and other more complicated dynamical patterns. We will apply these methods to the study of equations describing combustion of solid fuels and of the evolving in time interaction of several chemical reactants.
这个项目的主要目标是发展特定的算子理论摄动方法,用于研究应用动力系统中出现的偏微分方程组的行波和其他形式的稳定性问题。计划在Morse和Maslov指数、多维特征值问题(通过Dirichlet-to-Neumann算子的Birichlet-Schwinger扰动行列式)和Evans函数的谱性质等方面给出应用。将算子值亚纯函数的Keldysh型定理应用于关于行波和更复杂的多维模式的线性化的微分算子的谱分析,使用并进一步发展了发展方程的冻结方法。在更广泛的应用方面,非自伴微分算子的谱理论和Evans函数方法,结合关于强连续(但非解析)算子半群的谱性质的抽象结果,将被用来讨论化学动力学和燃烧理论中出现的具体物理模型的行波前锋的非线性稳定性。它包括对复杂系统的性质的研究,这些性质由无限多的参数在时间上演变而成,如它们的稳定性,被理解为在小扰动下保持不变的能力。在这个项目的过程中将使用和进一步发展的主要理论工具是在量子力学和散射理论中使用的无限维矩阵的行列式理论。结合推广微分方程组的Wronski行列式的理论,这将使我们能够计算指示传播波的不稳定程度和其他更复杂的动力学模式的指数。我们将应用这些方法来研究描述固体燃料燃烧的方程和几种化学反应物随时间演变的相互作用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yuri Latushkin其他文献

Stability of fronts in the diffusive Rosenzweig-MacArthur model
扩散 Rosenzweig-MacArthur 模型中前沿的稳定性
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Anna Ghazaryan;St'ephane Lafortune;Yuri Latushkin;Vahagn Manukian
  • 通讯作者:
    Vahagn Manukian
Dichotomy of differential equations on Banach spaces and an algebra of weighted translation operators
A regularity condition under which integral operators with operator-valued kernels are trace class

Yuri Latushkin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yuri Latushkin', 18)}}的其他基金

Collaborative Research: Stability and Instability of Periodically Stationary Nonlinear Waves with Applications to Fiber Lasers
合作研究:周期性平稳非线性波的稳定性和不稳定性及其在光纤激光器中的应用
  • 批准号:
    2106157
  • 财政年份:
    2021
  • 资助金额:
    $ 17.79万
  • 项目类别:
    Standard Grant
Research in Applied Dynamical Systems
应用动力系统研究
  • 批准号:
    1710989
  • 财政年份:
    2017
  • 资助金额:
    $ 17.79万
  • 项目类别:
    Standard Grant
Research in operator theory and applied dynamical systems
算子理论与应用动力系统研究
  • 批准号:
    0754705
  • 财政年份:
    2008
  • 资助金额:
    $ 17.79万
  • 项目类别:
    Standard Grant
Spectral theory of differential and weighted composition operators
微分和加权合成算子的谱理论
  • 批准号:
    0354339
  • 财政年份:
    2004
  • 资助金额:
    $ 17.79万
  • 项目类别:
    Standard Grant
US-Germany Cooperative Research: Center Manifolds and Stability of Nonlinear Partial Differential Equations
美德合作研究:非线性偏微分方程的中心流形和稳定性
  • 批准号:
    0338743
  • 财政年份:
    2004
  • 资助金额:
    $ 17.79万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Evolutionary Semigroups with Applications to Differential Equations and Dynamical Systems Theory
数学科学:演化半群及其在微分方程和动力系统理论中的应用
  • 批准号:
    9622105
  • 财政年份:
    1996
  • 资助金额:
    $ 17.79万
  • 项目类别:
    Standard Grant
Evolutionary Systems and Weighted Translation Operators
进化系统和加权翻译算子
  • 批准号:
    9400518
  • 财政年份:
    1994
  • 资助金额:
    $ 17.79万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
  • 批准号:
    12247163
  • 批准年份:
    2022
  • 资助金额:
    18.00 万元
  • 项目类别:
    专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
  • 批准号:
    12126512
  • 批准年份:
    2021
  • 资助金额:
    12.0 万元
  • 项目类别:
    数学天元基金项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
  • 批准号:
    61671064
  • 批准年份:
    2016
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目

相似海外基金

ACT of intelligence: Applied Category Theory for higher cognitive development
智力 ACT:更高认知发展的应用范畴论
  • 批准号:
    23K11797
  • 财政年份:
    2023
  • 资助金额:
    $ 17.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
RUI: Pure and Applied Knot Theory: Skeins, Hyperbolic Volumes, and Biopolymers
RUI:纯结理论和应用结理论:绞纱、双曲体积和生物聚合物
  • 批准号:
    2305414
  • 财政年份:
    2023
  • 资助金额:
    $ 17.79万
  • 项目类别:
    Standard Grant
Recursive Inequalities in Applied Proof Theory
应用证明理论中的递归不等式
  • 批准号:
    2889781
  • 财政年份:
    2023
  • 资助金额:
    $ 17.79万
  • 项目类别:
    Studentship
Conference: The Adjoint School: A Training Program for New Researchers in Applied Category Theory
会议:附属学校:应用范畴理论新研究人员培训计划
  • 批准号:
    2216871
  • 财政年份:
    2022
  • 资助金额:
    $ 17.79万
  • 项目类别:
    Standard Grant
Establishment of an applied methodology for geographical and economic impacts of transportation infrastructure projects based on spatial economic theory
基于空间经济理论建立交通基础设施项目地理和经济影响的应用方法
  • 批准号:
    22H01617
  • 财政年份:
    2022
  • 资助金额:
    $ 17.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Applied Variational Analysis: Theory, Algorithms, and Applications
应用变分分析:理论、算法和应用
  • 批准号:
    RGPIN-2017-06642
  • 财政年份:
    2021
  • 资助金额:
    $ 17.79万
  • 项目类别:
    Discovery Grants Program - Individual
Building New work design theory with IS for sustainability-applied ESG perspective
利用 IS 构建新的工作设计理论,以实现可持续发展应用的 ESG 视角
  • 批准号:
    21K20130
  • 财政年份:
    2021
  • 资助金额:
    $ 17.79万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
EAGER: CDS&E: Applied geometry and harmonic analysis in deep learning regularization: theory and applications
渴望:CDS
  • 批准号:
    2140982
  • 财政年份:
    2021
  • 资助金额:
    $ 17.79万
  • 项目类别:
    Continuing Grant
Heterogeneous Nucleation Theory Applied for Creation of SmFe12 Bulk Magnetic Materials
异质成核理论应用于 SmFe12 块体磁性材料的制备
  • 批准号:
    21K04688
  • 财政年份:
    2021
  • 资助金额:
    $ 17.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CDS&E: Applied Geometry and Harmonic Analysis in Deep Learning Regularization: Theory and Applications
CDS
  • 批准号:
    2052525
  • 财政年份:
    2020
  • 资助金额:
    $ 17.79万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了