Collaborative Research: Stability and Instability of Periodically Stationary Nonlinear Waves with Applications to Fiber Lasers

合作研究:周期性平稳非线性波的稳定性和不稳定性及其在光纤激光器中的应用

基本信息

  • 批准号:
    2106157
  • 负责人:
  • 金额:
    $ 4.3万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

Since the introduction of the soliton laser in the 1990's researchers have developed several generations of short pulse, high energy fiber lasers for a variety of applications. These lasers are configured to produce periodically stationary pulses by propagating light many times around a loop. Although different physical effects change the shape of the pulse as it traverses the loop, the pulse returns to the same shape once each period (round trip). A significant challenge for the modeling of these lasers is that from one generation to the next there has been a dramatic increase in the amount by which the pulse breathes, necessitating novel mathematical approaches. This project will develop theoretical and computational methods to determine periodically stationary pulse solutions of nonlinear wave equations modeling laser systems and to analyze their stability (robustness in the presence of random noise and other system perturbations). The project will provide computational tools to aid in the design of high energy lasers for medical applications, and of frequency combs for highly accurate measurements of time and frequency, with applications to geo-location systems, time and frequency standards, the calibration of astronomical instruments, and trace gas sensing. The project will provide broad training in applied mathematics for doctoral students and mentoring for junior faculty. In addition, the project will support complementary activity focused on pedagogical innovations. The laser models to be studied in this project are based on variants of the cubic-quintic complex Ginzburg-Landau equation. Classically, the spectrum of a stationary nonlinear wave is given by the zero set of the Evans function of the linearized differential operator. The stability of periodically stationary solutions of the Ginzburg-Landau equation and of models of fiber lasers will be characterized in terms of the spectrum of the monodromy operator of the linearization about the pulse. Since the stability problem for time-periodic solutions is formulated on a cylinder, rather than on the real line, any generalization of the Evans function will involve Fredholm determinants of operators on infinite-dimensional function spaces rather than classical determinants of matrices. To avoid the extreme stiffness of the differential equations used to compute the Evans function in this infinite dimensional context, the point spectrum of the monodromy operator will be identified with the zero set of an infinite-dimensional Fredholm determinant of a Birman-Schwinger operator on an infinite cylinder. Numerical methods will be developed to compute Fredholm determinants of such Birman-Schwinger operators. These methods will then be employed to determine stability regions in design parameter space for periodically stationary solutions of the Ginzburg-Landau equation and of models of experimental fiber laser systems. The generic instability of stationary solutions of reaction diffusion equations has recently been established by applying a related topological invariant called the Maslov index to the spectral theory of self-adjoint operators. A novel version of the Maslov index will be used to establish general stability results for periodically stationary solutions of the Ginzburg-Landau equation.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
自20世纪90年代孤子激光器问世以来,研究人员已经开发出几代短脉冲、高能量光纤激光器,用于各种应用。这些激光器被配置为通过围绕环多次传播光来产生周期性的稳定脉冲。虽然不同的物理效应会改变脉冲在循环中的形状,但脉冲在每个周期(往返)都会返回相同的形状。这些激光器建模的一个重大挑战是,从一代到下一代,脉冲呼吸的数量急剧增加,需要新的数学方法。该项目将开发理论和计算方法,以确定模拟激光系统的非线性波动方程的周期性稳定脉冲解,并分析其稳定性(在存在随机噪声和其他系统扰动的情况下的鲁棒性)。该项目将提供计算工具,以帮助设计用于医疗应用的高能激光器,以及用于高度精确测量时间和频率的频率梳,并应用于地理定位系统、时间和频率标准、天文仪器的校准和痕量气体传感。该项目将为博士生提供广泛的应用数学培训,并为初级教师提供指导。此外,该项目还将支持以教学创新为重点的补充活动。 在这个项目中要研究的激光模型是基于五阶复杂的金斯堡-朗道方程的变体。经典地,定常非线性波的谱由线性化微分算子的Evans函数的零点集给出。Ginzburg-Landau方程和光纤激光器模型的周期定态解的稳定性将根据关于脉冲的线性化的单值算子的谱来表征。由于时间周期解的稳定性问题是在圆柱上而不是在真实的直线上形成的,因此Evans函数的任何推广都将涉及无限维函数空间上算子的Fredholm行列式,而不是矩阵的经典行列式。为了避免在无限维情形下用于计算埃文斯函数的微分方程的极端刚性,单值算子的点谱将与无限圆柱上的Birman-Schwinger算子的无限维Fredholm行列式的零点集相同。数值方法将被开发来计算Fredholm行列式的Birman-Schwinger运营商。然后,这些方法将被用来确定在设计参数空间的Ginzburg-Landau方程和实验光纤激光器系统的模型的周期性稳定的解决方案的稳定区域。最近,通过将一个称为Maslov指数的相关拓扑不变量应用于自伴算子的谱理论,建立了反应扩散方程定态解的一般不稳定性。一个新版本的马斯洛夫指数将被用来建立一般的稳定性结果的定期固定解决方案的金斯堡-朗道equation.This奖项反映了NSF的法定使命,并已被认为是值得的支持,通过评估使用基金会的智力价值和更广泛的影响审查标准。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Fredholm determinants, Evans functions and Maslov indices for partial differential equations
  • DOI:
    10.1007/s00208-023-02696-6
  • 发表时间:
    2022-06
  • 期刊:
  • 影响因子:
    1.4
  • 作者:
    G. Cox;Y. Latushkin;A. Sukhtayev
  • 通讯作者:
    G. Cox;Y. Latushkin;A. Sukhtayev
Resolvent expansions for self‐adjoint operators via boundary triplets
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yuri Latushkin其他文献

Stability of fronts in the diffusive Rosenzweig-MacArthur model
扩散 Rosenzweig-MacArthur 模型中前沿的稳定性
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Anna Ghazaryan;St'ephane Lafortune;Yuri Latushkin;Vahagn Manukian
  • 通讯作者:
    Vahagn Manukian
Dichotomy of differential equations on Banach spaces and an algebra of weighted translation operators
A regularity condition under which integral operators with operator-valued kernels are trace class

Yuri Latushkin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yuri Latushkin', 18)}}的其他基金

Research in Applied Dynamical Systems
应用动力系统研究
  • 批准号:
    1710989
  • 财政年份:
    2017
  • 资助金额:
    $ 4.3万
  • 项目类别:
    Standard Grant
Spectral Theory and Applied Dynamical Systems
谱理论和应用动力系统
  • 批准号:
    1067929
  • 财政年份:
    2011
  • 资助金额:
    $ 4.3万
  • 项目类别:
    Continuing Grant
Research in operator theory and applied dynamical systems
算子理论与应用动力系统研究
  • 批准号:
    0754705
  • 财政年份:
    2008
  • 资助金额:
    $ 4.3万
  • 项目类别:
    Standard Grant
Spectral theory of differential and weighted composition operators
微分和加权合成算子的谱理论
  • 批准号:
    0354339
  • 财政年份:
    2004
  • 资助金额:
    $ 4.3万
  • 项目类别:
    Standard Grant
US-Germany Cooperative Research: Center Manifolds and Stability of Nonlinear Partial Differential Equations
美德合作研究:非线性偏微分方程的中心流形和稳定性
  • 批准号:
    0338743
  • 财政年份:
    2004
  • 资助金额:
    $ 4.3万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Evolutionary Semigroups with Applications to Differential Equations and Dynamical Systems Theory
数学科学:演化半群及其在微分方程和动力系统理论中的应用
  • 批准号:
    9622105
  • 财政年份:
    1996
  • 资助金额:
    $ 4.3万
  • 项目类别:
    Standard Grant
Evolutionary Systems and Weighted Translation Operators
进化系统和加权翻译算子
  • 批准号:
    9400518
  • 财政年份:
    1994
  • 资助金额:
    $ 4.3万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: NSFDEB-NERC: Warming's silver lining? Thermal compensation at multiple levels of organization may promote stream ecosystem stability in response to drought
合作研究:NSFDEB-NERC:变暖的一线希望?
  • 批准号:
    2312706
  • 财政年份:
    2024
  • 资助金额:
    $ 4.3万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
  • 批准号:
    2344215
  • 财政年份:
    2024
  • 资助金额:
    $ 4.3万
  • 项目类别:
    Standard Grant
Collaborative Research: Sediment and Stability: Quantifying the Effect of Moraine Building on Greenland Tidewater Glaciers
合作研究:沉积物和稳定性:量化冰碛建筑对格陵兰潮水冰川的影响
  • 批准号:
    2234522
  • 财政年份:
    2024
  • 资助金额:
    $ 4.3万
  • 项目类别:
    Standard Grant
Collaborative Research: Sediment and Stability: Quantifying the Effect of Moraine Building on Greenland Tidewater Glaciers
合作研究:沉积物和稳定性:量化冰碛建筑对格陵兰潮水冰川的影响
  • 批准号:
    2234523
  • 财政年份:
    2024
  • 资助金额:
    $ 4.3万
  • 项目类别:
    Standard Grant
Collaborative Research: Sediment and Stability: Quantifying the Effect of Moraine Building on Greenland Tidewater Glaciers
合作研究:沉积物和稳定性:量化冰碛建筑对格陵兰潮水冰川的影响
  • 批准号:
    2234524
  • 财政年份:
    2024
  • 资助金额:
    $ 4.3万
  • 项目类别:
    Standard Grant
Collaborative Research: NSFDEB-NERC: Warming's silver lining? Thermal compensation at multiple levels of organization may promote stream ecosystem stability in response to drought
合作研究:NSFDEB-NERC:变暖的一线希望?
  • 批准号:
    2312707
  • 财政年份:
    2024
  • 资助金额:
    $ 4.3万
  • 项目类别:
    Standard Grant
Collaborative Research: Sediment and Stability: Quantifying the Effect of Moraine Building on Greenland Tidewater Glaciers
合作研究:沉积物和稳定性:量化冰碛建筑对格陵兰潮水冰川的影响
  • 批准号:
    2234520
  • 财政年份:
    2024
  • 资助金额:
    $ 4.3万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
  • 批准号:
    2344214
  • 财政年份:
    2024
  • 资助金额:
    $ 4.3万
  • 项目类别:
    Standard Grant
Collaborative Research: Evaluating the Unique Composition, Environmental Stability, and Export of Dissolved Pyrogenic Organic Matter in Wildfire-Impacted Watersheds
合作研究:评估受野火影响的流域中溶解的热解有机物的独特组成、环境稳定性和输出
  • 批准号:
    2326437
  • 财政年份:
    2023
  • 资助金额:
    $ 4.3万
  • 项目类别:
    Standard Grant
Collaborative Research: BoCP-Implementation: Biodiversity and stability on a changing planet: plant traits and interactions that stabilize or destabilize ecosystems and populations
合作研究:BoCP-实施:不断变化的星球上的生物多样性和稳定性:稳定或破坏生态系统和种群的植物性状和相互作用
  • 批准号:
    2224853
  • 财政年份:
    2023
  • 资助金额:
    $ 4.3万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了