Measurement-Driven Quantum Dynamics and the Quantum-Classical Transition with Ultracold Atoms
测量驱动的量子动力学和超冷原子的量子经典转变
基本信息
- 批准号:1068583
- 负责人:
- 金额:$ 42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-08-15 至 2015-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project aims to achieve a better understanding of continuous quantum measurements of the motion of ultracold atoms. The core issue here is the interplay between measurement and the natural dynamical evolution of a quantum system. Such conditioned quantum evolution represents a challenging new regime of quantum dynamical systems that is both of fundamental interest and important for the long-term success of quantum technologies.This research characterizes continuous quantum measurements through experiments on the free-space dynamics of atoms interacting with classical laser fields. This research direction begins with an experiment to study the quantum Zeno effect for the free-space motion of atoms, due to a position measurement that is itself localized in space. This effect is manifested as a coherent reflection from the measurement region. This experiment will demonstrate coherent evolution induced by the stochastic, back-action force of a quantum measurement: an atom mirror that displays coherent behavior even in a regime of strong dissipation. The next milestone is the demonstration of a time- and space-resolved measurement of a single atom by imaging light scattered from a probe laser, a realization of a continuous "Heisenberg microscope." This will allow a thorough characterization of a continuous measurement process, including studies of the emergence of quantum correlations and classical-like trajectory behavior in the measurement record. An extension of this research direction examines some subtleties in the Heisenberg microscope, particularly in how this system does not normally give rise to a standard position measurement. Specifically, the experiment studies the transition from normal to anomalous diffusion due to the measurement back-action.The main long-term goal of this research direction is to test recent theories of how continuous-measurement processes can cause a transition from quantum to classical behavior. The quantum-classical boundary remains one of the most challenging and least understood aspects of quantum mechanics, especially for classically chaotic systems. While this is a topic of clear fundamental interest, a deep understanding of the quantum--classical transition will also provide valuable insight in situations and technologies where the preservation of quantum coherence is paramount. These experiments involve the application of the Heisenberg microscope to observe the dynamics of a single atom in anharmonic, time-dependent potentials, potentials that classically give rise to the chaos that is characteristically absent from isolated quantum systems. The major goal is to observe a controlled, measurement-induced transition of a manifestly quantum system to classical, chaotic-trajectory behavior. This occurs when continuous measurement forces the atom to remain localized in phase space, where it then traces out a nearly classical orbit. This research direction also studies the rich and complex behavior in the transition region between quantum-classical behavior, where, for example, "nonclassical chaos" is predicted to occur.This research project studies the fundamental physics of measurements within the realm of quantum mechanics, and investigates how the disturbances (fundamental by-products of measurements, as predicted by quantum mechanics) influence the motion of quantum systems. This research therefore contributes significantly to knowledge across disciplines, including the areas of quantum information, measurement, and control; atomic physics; and condensed-matter physics. All of these are highly active scientific fields of technological importance and fundamental interest. Advancing fundamental knowledge in these areas facilitates future quantum technologies, such as quantum computation and information processing, quantum communication, quantum simulation, and quantum metrology. This is particularly the case in the critical areas of acquiring quantum information and avoiding decoherence (the destruction of quantum-mechanical effects by coupling to the surroundings of a quantum system) or potentially putting it to good use.Education is also an integral component of the project. This research provides dissertation topics for at least two graduate students, and also involves several undergraduates in an exciting and interdisciplinary research area. This research also directly impacts coursework at the University of Oregon. In lecture courses at all levels, quantum measurement and dissipation, as well as related atom-optical techniques, provide relevance for course subject matter and stimulate student interest. The University of Oregon optics teaching laboratory also benefits from "technology transfer" from the experiment, in that modular, easily reproduced equipment designed for use in the apparatus is constructed by teaching-laboratory students to build up new, advanced-laboratory modules, including a magneto-optic trap and a photon-down-conversion experiment.
该项目旨在更好地理解超冷原子运动的连续量子测量。 这里的核心问题是测量与量子系统自然动态演化之间的相互作用。 这种条件量子演化代表了量子动力学系统的一种具有挑战性的新机制,这对于量子技术的长期成功既具有根本意义,又非常重要。这项研究通过原子与经典激光场相互作用的自由空间动力学实验来表征连续量子测量。 该研究方向始于一项实验,研究原子自由空间运动的量子芝诺效应,这是由于位置测量本身位于空间中。 这种效应表现为测量区域的相干反射。 该实验将证明量子测量的随机反作用力引起的相干演化:即使在强耗散状态下也能表现出相干行为的原子镜。下一个里程碑是通过从探针激光器散射的成像光来演示对单个原子的时间和空间分辨测量,这是连续“海森堡显微镜”的实现。这将允许对连续测量过程进行彻底的表征,包括对测量记录中量子相关性和类经典轨迹行为的出现的研究。 该研究方向的延伸研究了海森堡显微镜中的一些微妙之处,特别是该系统通常不会产生标准位置测量的原因。 具体来说,该实验研究由于测量反作用而从正常扩散到异常扩散的转变。该研究方向的主要长期目标是测试连续测量过程如何导致从量子行为到经典行为转变的最新理论。 量子经典边界仍然是量子力学中最具挑战性和最难理解的方面之一,特别是对于经典混沌系统。 虽然这是一个明显具有根本意义的话题,但对量子-经典转变的深入理解也将为保持量子相干性至关重要的情况和技术提供有价值的见解。 这些实验涉及应用海森堡显微镜来观察单个原子在非谐波、时间相关电势中的动力学,这些电势通常会产生孤立量子系统通常不存在的混沌。主要目标是观察明显量子系统向经典混沌轨迹行为的受控、测量引起的转变。 当连续测量迫使原子保持在相空间中的局域性时,就会发生这种情况,然后它会在相空间中描绘出近乎经典的轨道。 该研究方向还研究量子与经典行为之间的过渡区域中丰富而复杂的行为,例如,预计会发生“非经典混沌”。该研究项目研究量子力学领域内测量的基础物理,并研究扰动(量子力学预测的测量的基本副产品)如何影响量子系统的运动。 因此,这项研究对跨学科知识做出了重大贡献,包括量子信息、测量和控制领域;原子物理学;和凝聚态物理。 所有这些都是具有技术重要性和根本利益的高度活跃的科学领域。 推进这些领域的基础知识有利于未来的量子技术,例如量子计算和信息处理、量子通信、量子模拟和量子计量。 在获取量子信息和避免退相干(通过与量子系统周围环境耦合而破坏量子力学效应)或潜在地充分利用量子信息的关键领域尤其如此。教育也是该项目不可或缺的组成部分。 这项研究为至少两名研究生提供了论文主题,还涉及一些令人兴奋的跨学科研究领域的本科生。 这项研究也直接影响俄勒冈大学的课程。 在各级讲座课程中,量子测量和耗散以及相关的原子光学技术提供了课程主题的相关性并激发了学生的兴趣。 俄勒冈大学光学教学实验室也受益于实验的“技术转让”,因为教学实验室的学生设计了用于该装置的模块化、易于复制的设备,以建立新的、先进的实验室模块,包括磁光陷阱和光子下转换实验。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Steck其他文献
Brezis Pseudomonotonicity is Strictly Weaker than Ky–Fan Hemicontinuity
- DOI:
10.1007/s10957-018-1435-x - 发表时间:
2018-11-16 - 期刊:
- 影响因子:1.500
- 作者:
Daniel Steck - 通讯作者:
Daniel Steck
Improved local convergence results for augmented Lagrangian methods in $${\varvec{C}}^\mathbf{2}$$ -cone reducible constrained optimization
- DOI:
10.1007/s10107-018-1261-9 - 发表时间:
2018-03-17 - 期刊:
- 影响因子:2.500
- 作者:
Christian Kanzow;Daniel Steck - 通讯作者:
Daniel Steck
Daniel Steck的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel Steck', 18)}}的其他基金
Stochastic and Dissipative Dynamics of Ultracold Atoms
超冷原子的随机和耗散动力学
- 批准号:
1505118 - 财政年份:2015
- 资助金额:
$ 42万 - 项目类别:
Continuing Grant
Ultracold Atoms as a Probe of Novel Atom-Surface Interactions
超冷原子作为新型原子-表面相互作用的探针
- 批准号:
0855412 - 财政年份:2009
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
CAREER: Continuous Measurements of Quantum Dynamical Systems
职业:量子动力系统的连续测量
- 批准号:
0547926 - 财政年份:2006
- 资助金额:
$ 42万 - 项目类别:
Continuing Grant
Comprehensive Nuclear Spectroscopy Instructional Facility
综合核能谱教学设施
- 批准号:
8650673 - 财政年份:1986
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
相似国自然基金
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
相似海外基金
Quantum Federated Learning-driven Secure Industry Cloud Collaboration Framework
量子联邦学习驱动的安全行业云协作框架
- 批准号:
24K20781 - 财政年份:2024
- 资助金额:
$ 42万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Quantum Chemical Methods for Studying Photon and Electron Driven Processes
研究光子和电子驱动过程的量子化学方法
- 批准号:
2303111 - 财政年份:2023
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
Study on light-field-driven dynamics for ultrafast control of quantum states of matter
用于物质量子态超快控制的光场驱动动力学研究
- 批准号:
23K13052 - 财政年份:2023
- 资助金额:
$ 42万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: Quantum defects in two-dimensional materials by local-symmetry-guided data-driven design
职业:通过局域对称引导的数据驱动设计研究二维材料中的量子缺陷
- 批准号:
2314050 - 财政年份:2023
- 资助金额:
$ 42万 - 项目类别:
Continuing Grant
CAREER: Multi-scale Mechanical Behavior of Quantum Dot Nanocomposites: Towards Data-driven Automatic Discovery of High-performance Structures
职业:量子点纳米复合材料的多尺度机械行为:迈向数据驱动的高性能结构的自动发现
- 批准号:
2145604 - 财政年份:2022
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
Precision Reaction Field Design of Organocatalysts Based on Demand-driven Quantum Chemical Calculations
基于需求驱动的量子化学计算有机催化剂精密反应场设计
- 批准号:
22K19018 - 财政年份:2022
- 资助金额:
$ 42万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
LEAPS-MPS Quantum vortex states and non-collinear magnetic interactions in light-driven quantum materials
光驱动量子材料中的LEAPS-MPS量子涡旋态和非共线磁相互作用
- 批准号:
2213429 - 财政年份:2022
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
CAREER: Acoustic-driven Manipulation of Electrons and Exciton Species in Atomically-thin Quantum Materials
职业:原子薄量子材料中电子和激子物种的声驱动操纵
- 批准号:
2146567 - 财政年份:2022
- 资助金额:
$ 42万 - 项目类别:
Continuing Grant
Exploring Spin-Orbit-Driven Physics in Iridium-based Quantum Materials
探索铱基量子材料中的自旋轨道驱动物理学
- 批准号:
574354-2022 - 财政年份:2022
- 资助金额:
$ 42万 - 项目类别:
University Undergraduate Student Research Awards
CAREER: Quantum defects in two-dimensional materials by local-symmetry-guided data-driven design
职业:通过局域对称引导的数据驱动设计研究二维材料中的量子缺陷
- 批准号:
2144936 - 财政年份:2022
- 资助金额:
$ 42万 - 项目类别:
Continuing Grant