Stochastic and Dissipative Dynamics of Ultracold Atoms
超冷原子的随机和耗散动力学
基本信息
- 批准号:1505118
- 负责人:
- 金额:$ 42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-08-15 至 2019-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Quantum mechanics is an impressively successful theory that tells us how very small (atomic and subatomic) objects behave. Despite the success so far, quantum mechanics has important aspects that remain counterintuitive and require deeper understanding. One such aspect of current interest involves measurements on quantum systems. Fundamentally, when measuring some aspect of a quantum system, the system is disturbed by the measurement, such that other aspects of the system change in response to the measurement. The most famous example is "Heisenberg's uncertainty principle," which, for example, states that when one has better knowledge of the position of an atom, one must necessarily have worse information about the atom's velocity. More generally, this disturbance effect goes by the name of "quantum back-action." The goal of this project is use ultracold atoms to observe and study several manifestations of quantum back-action that have been predicted theoretically. Broadly speaking, this research addresses the following questions: Under what conditions does back-action significantly influence the future of the system? Can precisely engineered back-action be useful as a tool to control the system? These questions are nontrivial, as back-action generally refers to a random disturbance to a quantum system. However, under carefully arranged conditions, the randomness of the back-action can control quantum systems in well-defined ways. This research will advance fundamental understanding of quantum mechanics, measurement, and information, and it will provide new tools that may be useful in future technologies such as quantum computers and precision-measurement devices for such quantities as acceleration and magnetic field, whose performance will ultimately be limited by quantum effects.More specifically, the effects of quantum back-action on the dynamics of ultracold atoms will be studied in three separate scenarios. In the first scenario, a single trapped atom undergoes coherent transitions between two states when driven by a laser field. Spontaneous emission not only causes the atom to jump from the excited state to the ground state at random times, but also provides information about the present state of the atom. By selecting only the (random) cases where an atom does not spontaneously emit at all, the experiment is predicted to show that spontaneous emission nevertheless has an effect, via the relative probabilities for the atom to be in each state (i.e., the measurements should not be explainable by a theory that does not include spontaneous emission). In the second scenario, atoms confined to an optical lattice undergo spontaneous emission, which produces heating (momentum diffusion). Although momentum diffusion should increase the rate at which the atoms spread through the lattice, an interesting prediction is that for small spontaneous-emission rates, the atoms' spreading should be suppressed due to the inhibition of quantum tunneling. For larger spontaneous-emission rates, the spreading of the atoms should then again increase as expected. In the final scenario, a realization of the predicted "blowtorch" effect is to be realized with atoms in an optical lattice: by making a space-dependent "temperature" (spontaneous-emission rate) for the atoms, a pumping effect for the atoms (realized as a steady current of atoms) should be observable, demonstrating a fundamental effect in nonequilibrium thermodynamics.
量子力学是一个令人印象深刻的成功理论,它告诉我们非常小的(原子和亚原子)物体的行为。 尽管到目前为止取得了成功,但量子力学仍有一些重要的方面是违反直觉的,需要更深入的理解。 当前感兴趣的一个这样的方面涉及量子系统的测量。 从根本上说,当测量量子系统的某些方面时,系统会受到测量的干扰,从而系统的其他方面会响应测量而发生变化。 最著名的例子是“海森堡测不准原理”,例如,它指出,当一个人对原子的位置有更好的了解时,他必须对原子的速度有更差的信息。 更一般地说,这种扰动效应被称为“量子反作用”。“这个项目的目标是使用超冷原子来观察和研究理论上预测的量子反作用的几种表现形式。 从广义上讲,这项研究解决了以下问题:在什么条件下,反作用显着影响系统的未来? 精确设计的反作用能作为控制系统的工具吗? 这些问题都是不平凡的,因为反作用通常是指对量子系统的随机扰动。 然而,在精心安排的条件下,反作用的随机性可以以定义明确的方式控制量子系统。 这项研究将推进对量子力学、测量和信息的基本理解,并将提供可能在未来技术中有用的新工具,如量子计算机和加速度和磁场等量的精密测量设备,其性能最终将受到量子效应的限制。量子反作用对超冷原子动力学的影响将在三个不同的情况下进行研究。 在第一种情况下,单个被囚禁的原子在激光场的驱动下经历两个态之间的相干跃迁。 自发辐射不仅能使原子在任意时刻从激发态跃迁到基态,而且能提供原子当前状态的信息。 通过仅选择原子根本不自发发射的(随机)情况,通过原子处于每个状态的相对概率(即,该测量不应该用不包括自发发射的理论来解释)。 在第二种情况下,被限制在光学晶格中的原子经历自发辐射,这产生加热(动量扩散)。 虽然动量扩散应该会增加原子在晶格中扩散的速率,但一个有趣的预测是,对于小的自发发射速率,原子的扩散应该会由于量子隧穿的抑制而受到抑制。 对于更大的自发辐射率,原子的扩散应该会像预期的那样再次增加。 在最后一种情况下,预测的“喷灯”效应的实现是通过光学晶格中的原子来实现的:通过为原子设定一个与空间相关的“温度”(自发发射率),原子的泵浦效应(实现为稳定的原子流)应该是可观察的,这表明了非平衡热力学中的基本效应。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Steck其他文献
Brezis Pseudomonotonicity is Strictly Weaker than Ky–Fan Hemicontinuity
- DOI:
10.1007/s10957-018-1435-x - 发表时间:
2018-11-16 - 期刊:
- 影响因子:1.500
- 作者:
Daniel Steck - 通讯作者:
Daniel Steck
Improved local convergence results for augmented Lagrangian methods in $${\varvec{C}}^\mathbf{2}$$ -cone reducible constrained optimization
- DOI:
10.1007/s10107-018-1261-9 - 发表时间:
2018-03-17 - 期刊:
- 影响因子:2.500
- 作者:
Christian Kanzow;Daniel Steck - 通讯作者:
Daniel Steck
Daniel Steck的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel Steck', 18)}}的其他基金
Measurement-Driven Quantum Dynamics and the Quantum-Classical Transition with Ultracold Atoms
测量驱动的量子动力学和超冷原子的量子经典转变
- 批准号:
1068583 - 财政年份:2011
- 资助金额:
$ 42万 - 项目类别:
Continuing Grant
Ultracold Atoms as a Probe of Novel Atom-Surface Interactions
超冷原子作为新型原子-表面相互作用的探针
- 批准号:
0855412 - 财政年份:2009
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
CAREER: Continuous Measurements of Quantum Dynamical Systems
职业:量子动力系统的连续测量
- 批准号:
0547926 - 财政年份:2006
- 资助金额:
$ 42万 - 项目类别:
Continuing Grant
Comprehensive Nuclear Spectroscopy Instructional Facility
综合核能谱教学设施
- 批准号:
8650673 - 财政年份:1986
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
相似海外基金
Dynamics and Non-Dissipative Approximations of Nonlinear Nonlocal Fluid Equations
非线性非局部流体方程的动力学和非耗散近似
- 批准号:
2204614 - 财政年份:2022
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
Applying large eddy simulation to dissipative particle dynamics modeling toward better understanding of complex flow phenomena
将大涡模拟应用于耗散粒子动力学建模,以更好地理解复杂的流动现象
- 批准号:
22K03904 - 财政年份:2022
- 资助金额:
$ 42万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Control of dissipative many-body dynamics in AMO quantum simulators
AMO 量子模拟器中耗散多体动力学的控制
- 批准号:
2557612 - 财政年份:2021
- 资助金额:
$ 42万 - 项目类别:
Studentship
Dissipative structures in the non-equilibrium dynamics of chiral liquid crystal droplets
手性液晶液滴非平衡动力学中的耗散结构
- 批准号:
20K14433 - 财政年份:2020
- 资助金额:
$ 42万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Toward the understanding of organizing center for the complex dynamics in dissipative systems
理解耗散系统中复杂动力学的组织中心
- 批准号:
20K20341 - 财政年份:2020
- 资助金额:
$ 42万 - 项目类别:
Grant-in-Aid for Challenging Research (Pioneering)
Quantum dissipative dynamics in the Bose polaron problem and beyond
玻色极化子问题及其他问题中的量子耗散动力学
- 批准号:
20K14417 - 财政年份:2020
- 资助金额:
$ 42万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Clarification of small ice particles motion during water freezing using Near Infrared camera and dissipative particle dynamics simulations
使用近红外相机和耗散粒子动力学模拟澄清水结冰期间小冰粒的运动
- 批准号:
19K14886 - 财政年份:2019
- 资助金额:
$ 42万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Dissipative structure in granular segregation: cross-talk between rheology and interface dynamics
颗粒偏析中的耗散结构:流变学和界面动力学之间的串扰
- 批准号:
19K14614 - 财政年份:2019
- 资助金额:
$ 42万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
EAGER: Analog Quantum Simulation of Dissipative Quantum Dynamics in Condensed-Phase Chemical Systems
EAGER:凝聚相化学系统中耗散量子动力学的模拟量子模拟
- 批准号:
1836913 - 财政年份:2018
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
Theory of dissipative fluid dynamics (B01)
耗散流体动力学理论(B01)
- 批准号:
376489561 - 财政年份:2017
- 资助金额:
$ 42万 - 项目类别:
CRC/Transregios














{{item.name}}会员




