Translation Flows on Flat Surfaces and the Teichmueller Geodesic Flow
平面上的平移流和 Teichmueller 测地线流
基本信息
- 批准号:1068735
- 负责人:
- 金额:$ 12.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-06-01 至 2014-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The research is a study of dynamical properties of translation flows on flat surfaces, with a special emphasis on connections with probability theory. In previously funded work, the proposer has obtained new limit theorems for translation flows. These results give a completely new type of limit theorems in ergodic theory and open a wide array of questions. The proposer will continue his study of limit distributions for translation flows. An important particular case is that of flows along stable foliations of pseudo-Anosov diffeomorphisms.A specific tool essential for this study is the symbolic coding, developed and studied by the proposer, of translation flows as suspension flows over Vershik automorphisms, a construction developing earlier work of S.Ito. Strongly chaotic, hyperbolic behavior of the Teichmueller flow controls the mildly chaotic, parabolic behavior of translation flows.In the second, more geometric, part of the project, the proposer will continue his investigation of the chaotic properties of the Teichmueller geodesic flow.We see chaotic behavior in the evolution of stock prices, weather patterns, turbulent fluids and traffic jams. How to control chaotic behavior? A key role in our modern perception of chaos is played by the ergodic theory of dynamical systems. The proposed research studies the slow chaos for flows on surfaces, a central class of examples in geometry and physics. The project also has an important pedagogical component. Through lectures by visiting scholars, working seminars and reading projects related to the proposal, the proposer will continue involving Rice undergraduate and graduate students in Mathematical research.
该研究是对平面上平移流的动力学特性的研究,特别强调与概率论的联系。在之前资助的工作中,提议者获得了翻译流的新极限定理。这些结果给出了遍历理论中全新类型的极限定理,并提出了一系列广泛的问题。提议者将继续研究翻译流的极限分布。一个重要的特例是沿着伪阿诺索夫微分同胚的稳定叶流的流动。这项研究必不可少的一个特定工具是由提案者开发和研究的符号编码,将平移流作为 Vershik 自同构上的悬浮流,这是 S.Ito 早期工作的一个发展结构。 Teichmueller 流的强混沌双曲行为控制着平移流的轻度混沌抛物线行为。在该项目的第二个更具几何性的部分中,提议者将继续研究 Teichmueller 测地流的混沌特性。我们在股票价格、天气模式、湍流流体和交通拥堵的演变中看到了混沌行为。如何控制混乱的行为?动力系统的遍历理论在我们现代对混沌的认知中发挥着关键作用。拟议的研究研究了表面流动的缓慢混沌,这是几何和物理学的核心例子。该项目还有一个重要的教学部分。通过访问学者的讲座、工作研讨会和与该提案相关的阅读项目,提案者将继续让莱斯大学的本科生和研究生参与数学研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexander Bufetov其他文献
The Expectation of a Multiplicative Functional under the Sine-Process
- DOI:
10.1134/s0016266324020035 - 发表时间:
2024-07-21 - 期刊:
- 影响因子:0.700
- 作者:
Alexander Bufetov - 通讯作者:
Alexander Bufetov
The Speed of Convergence Under the Kolmogorov–Smirnov Metric in the Soshnikov Central Limit Theorem for the Sine Process
- DOI:
10.1134/s1234567825020028 - 发表时间:
2025-07-04 - 期刊:
- 影响因子:0.700
- 作者:
Alexander Bufetov - 通讯作者:
Alexander Bufetov
Alexander Bufetov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexander Bufetov', 18)}}的其他基金
Interval Exchange Maps and Dynamics in Moduli Space
模空间中的区间交换图和动力学
- 批准号:
0604386 - 财政年份:2006
- 资助金额:
$ 12.99万 - 项目类别:
Continuing grant
相似海外基金
Computing Lagrangian means in multi-timescale fluid flows
计算多时间尺度流体流动中的拉格朗日均值
- 批准号:
EP/Y021479/1 - 财政年份:2024
- 资助金额:
$ 12.99万 - 项目类别:
Research Grant
MHDSSP: Self-sustaining processes and edge states in magnetohydrodynamic flows subject to rotation and shear
MHDSSP:受到旋转和剪切作用的磁流体动力流中的自持过程和边缘状态
- 批准号:
EP/Y029194/1 - 财政年份:2024
- 资助金额:
$ 12.99万 - 项目类别:
Fellowship
Collaborative Research: GEM--Multi-scale Magnetosphere-Ionosphere-Thermosphere Coupling Dynamics Driven by Bursty Bulk Flows
合作研究:GEM——突发体流驱动的多尺度磁层-电离层-热层耦合动力学
- 批准号:
2349872 - 财政年份:2024
- 资助金额:
$ 12.99万 - 项目类别:
Standard Grant
Mesh-free methods for turbulent reacting flows: the next generation of DNS
用于湍流反应流的无网格方法:下一代 DNS
- 批准号:
EP/W005247/2 - 财政年份:2024
- 资助金额:
$ 12.99万 - 项目类别:
Research Grant
SUPERSLUG: Deconstructing sediment superslugs as a legacy of extreme flows
SUPERSLUG:解构沉积物超级段塞作为极端流动的遗产
- 批准号:
NE/Z00022X/1 - 财政年份:2024
- 资助金额:
$ 12.99万 - 项目类别:
Research Grant
Conference: Geometric Flows and Relativity
会议:几何流和相对论
- 批准号:
2348273 - 财政年份:2024
- 资助金额:
$ 12.99万 - 项目类别:
Standard Grant
Conference: St. Louis Topology Conference: Flows and Foliations in 3-Manifolds
会议:圣路易斯拓扑会议:3 流形中的流动和叶理
- 批准号:
2350309 - 财政年份:2024
- 资助金额:
$ 12.99万 - 项目类别:
Standard Grant
CAREER: Turbulence-Resolving Integral Simulations for Boundary Layer Flows
职业:边界层流的湍流求解积分模拟
- 批准号:
2340121 - 财政年份:2024
- 资助金额:
$ 12.99万 - 项目类别:
Continuing Grant
ERI: Experimental Investigation of Compressibility Effects on Turbulent Kinetic Energy Production in Supersonic Flows
ERI:压缩性对超音速流中湍动能产生的影响的实验研究
- 批准号:
2347416 - 财政年份:2024
- 资助金额:
$ 12.99万 - 项目类别:
Standard Grant
Low Regularity and Long Time Dynamics in Nonlinear Dispersive Flows
非线性弥散流中的低规律性和长时间动态
- 批准号:
2348908 - 财政年份:2024
- 资助金额:
$ 12.99万 - 项目类别:
Standard Grant