Conference: Geometric Flows and Relativity
会议:几何流和相对论
基本信息
- 批准号:2348273
- 负责人:
- 金额:$ 3.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-02-01 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The ``Geometric Flows and Relativity” summer school and workshop will take place during March 11—March 20, 2024 in Uruguay; the summer school will be held in Montevideo and the workshop in Punta del Este. The first part of the meeting, the summer school, will consist of three lecture series whose topics will be on mean curvature flow, Ricci flow and applications of geometric flows to mathematical relativity, respectively. The second part of the meeting, a 3-day workshop, will consist of several talks aiming to discuss recent exciting progress in geometric flows and related fields. The goals of this meeting are: (1) Introduce graduate students and early career researchers from the USA, South America and other regions of the world to the field of geometric flows and applications, allowing them to learn about new exciting developments and to have direct contact with more senior researchers; (2) Promote research, by bringing together active leading specialists; and (3) Support the international environment and network by strengthening the collaborations within different institutions, particularly from the USA and South America.Geometric analysis is one of the most active and exciting areas in pure mathematics today and geometric flows, in particular, have proven to be a powerful tool in the analysis of a large number of important problems in differential geometry, image processing and mathematical physics, leading to a profound impact on each of these fields. They also arise naturally in various physical contexts such as thermomechanics, annealing metals, crystal growth, flame propagation, wearing processes and conformal field theory. Geometric flows are therefore of interest to a diverse group of scientists outside of pure mathematical fields, including applied mathematicians, materials scientists and theoretical physicists. For all these reasons, the area has gained a large international interest to an extent that by now a large network of specialists are present all over the world. This meeting will be an international gathering on this active topic in an area where such events are sparse. Meeting’s webpage: http://www.cmat.edu.uy/~mreiris/ssw/SSW.htmlThis award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
“几何流动和相对论”暑期学校和讲习班将于2024年3月11日至3月20日在乌拉圭举行;暑期学校将在蒙得维的亚举行,讲习班将在埃斯特角城举行。会议的第一部分,即暑期学校,将包括三个系列讲座,主题分别是平均曲率流、利玛奇流和几何流在数学相对论中的应用。会议的第二部分是一个为期3天的研讨会,将包括几场旨在讨论几何流和相关领域的最新令人兴奋的进展的会谈。本次会议的目标是:(1)向来自美国、南美和世界其他地区的研究生和早期职业研究人员介绍几何流和应用领域,让他们了解新的令人兴奋的发展,并与更资深的研究人员直接接触;(2)通过召集活跃的领先专家来促进研究;(3)通过加强不同机构之间的合作,特别是来自美国和南美的合作,支持国际环境和网络。几何分析是当今纯数学中最活跃和最令人兴奋的领域之一,特别是几何流,已被证明是分析微分几何、图像处理和数学物理中大量重要问题的有力工具,对这些领域的每个领域都产生了深远的影响。它们也自然地出现在各种物理环境中,如热力学、退火金属、晶体生长、火焰传播、磨损过程和共形场理论。因此,几何流引起了纯数学领域之外的各种科学家的兴趣,包括应用数学家、材料科学家和理论物理学家。由于所有这些原因,该领域已经获得了很大的国际兴趣,到目前为止,世界各地都有一个庞大的专家网络。这次会议将是在一个此类活动稀少的地区就这一活跃主题举行的一次国际聚会。该奖项反映了美国国家科学基金会的法定使命,并通过基金会的智力价值和更广泛的影响审查标准进行评估,认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Theodora Bourni其他文献
The Vanishing of the Fundamental Gap of Convex Domains in $$\mathbb {H}^n$$
- DOI:
10.1007/s00023-021-01096-3 - 发表时间:
2021-09-13 - 期刊:
- 影响因子:1.300
- 作者:
Theodora Bourni;Julie Clutterbuck;Xuan Hien Nguyen;Alina Stancu;Guofang Wei;Valentina-Mira Wheeler - 通讯作者:
Valentina-Mira Wheeler
An Allard type regularity theorem for varifolds with a Hölder condition on the first variation
- DOI:
10.1007/s00526-016-0982-y - 发表时间:
2016-04-25 - 期刊:
- 影响因子:2.000
- 作者:
Theodora Bourni;Alexander Volkmann - 通讯作者:
Alexander Volkmann
Nonplanar ancient curve shortening flows in $${{\mathbb {R}}}^3$$ from grim reapers
- DOI:
10.1007/s00209-023-03320-8 - 发表时间:
2023-08-07 - 期刊:
- 影响因子:1.000
- 作者:
Theodora Bourni;Alexander Mramor - 通讯作者:
Alexander Mramor
Classification of Convex Ancient Solutions to Free Boundary Curve Shortening Flow in Convex Domains
- DOI:
10.1007/s12220-025-02036-x - 发表时间:
2025-06-04 - 期刊:
- 影响因子:1.500
- 作者:
Theodora Bourni;Nathan Burns;Spencer Catron - 通讯作者:
Spencer Catron
Theodora Bourni的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Theodora Bourni', 18)}}的其他基金
2018 John Barrett Memorial Lectures
2018年约翰·巴雷特纪念讲座
- 批准号:
1812058 - 财政年份:2018
- 资助金额:
$ 3.5万 - 项目类别:
Standard Grant
相似国自然基金
Lagrangian origin of geometric approaches to scattering amplitudes
- 批准号:24ZR1450600
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Geometric flows and analysis on metric spaces
几何流和度量空间分析
- 批准号:
2305397 - 财政年份:2023
- 资助金额:
$ 3.5万 - 项目类别:
Standard Grant
Conference: Geometric flows and applications
会议:几何流及应用
- 批准号:
2316597 - 财政年份:2023
- 资助金额:
$ 3.5万 - 项目类别:
Standard Grant
Study on geometric structures of curvature flows and submanifolds
曲率流和子流形的几何结构研究
- 批准号:
22K03303 - 财政年份:2022
- 资助金额:
$ 3.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The exponential map for flows and its application in geometric control theory
流动指数图及其在几何控制理论中的应用
- 批准号:
RGPIN-2019-04554 - 财政年份:2022
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
Analysis on singularities of higher order geometric gradient flows
高阶几何梯度流的奇点分析
- 批准号:
21H00990 - 财政年份:2021
- 资助金额:
$ 3.5万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
The exponential map for flows and its application in geometric control theory
流动指数图及其在几何控制理论中的应用
- 批准号:
RGPIN-2019-04554 - 财政年份:2021
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
Ancient Solutions and Singularities in Geometric Flows
几何流中的古代解和奇点
- 批准号:
2105508 - 财政年份:2021
- 资助金额:
$ 3.5万 - 项目类别:
Standard Grant
Geometric Flows, Geometric Inequalities, and Rigidity of Embeddings
几何流、几何不等式和嵌入刚性
- 批准号:
2103573 - 财政年份:2021
- 资助金额:
$ 3.5万 - 项目类别:
Continuing Grant