Proof Mining and Formal Verification
证明挖掘和形式验证
基本信息
- 批准号:1068829
- 负责人:
- 金额:$ 22.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-08-01 至 2015-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In this project, Avigad proposes to explore applications of proof theory to three different domains: proof mining in ergodic theory and additive combinatorics; formal verification of mathematical proofs; and the history and philosophy of mathematics. The first involves the use of proof-theoretic methods to extract explicit information, like rates of convergence and bounds, from nonconstructive mathematical proofs. Avigad will build on past work to obtain better combinatorial and quantitative information from recent applications of ergodic theory to additive combinatorics. The second involves using computational methods, such as interactive proof assistants, to verify the correctness of mathematical proofs. Avigad has formally verified a proof of the prime number theorem and has contributed to an ambitious project, directed by Georges Gonthier, to verify the Feit-Thompson theorem. Building on these experiences, Avigad will develop logical infrastructure to support such efforts. Finally, Avigad will rely on a syntactic, proof-theoretic understanding of mathematical methods to address important issues in the history and philosophy of mathematics.Some of the most important advances in mathematical logic in the twentieth century are based on the realization that the language of mathematics and the rules of mathematical reasoning can be described in very precise terms. This project involves applying this idea in three distinct ways. The first involves the use of logical methods to analyze and extract useful information from mathematical proofs in different domains. The second involves the use of computers to verify the correctness of mathematical arguments and calculations, and to assist in mathematical reasoning. The third involves obtaining a better historical and philosophical understanding of the methods of mathematical reasoning.
在这个项目中,Avigad建议探索证明理论在三个不同领域的应用:遍历理论和加法组合学中的证明挖掘;数学证明的形式化验证;以及数学的历史和哲学。第一个涉及使用证明理论的方法来提取明确的信息,如收敛速度和界限,从非建设性的数学证明。Avigad将建立在过去的工作,以获得更好的组合和定量信息,从最近的应用遍历理论添加剂组合。第二个涉及使用计算方法,如交互式证明助手,以验证数学证明的正确性。Avigad已经正式验证了素数定理的证明,并为Georges Gonthier指导的一个雄心勃勃的项目做出了贡献,以验证Feit-Thompson定理。在这些经验的基础上,Avigad将开发逻辑基础设施来支持这些努力。最后,Avigad将依靠对数学方法的句法、证明理论的理解来解决数学史和数学哲学中的重要问题。世纪数理逻辑中一些最重要的进步是基于这样一种认识,即数学语言和数学推理规则可以用非常精确的术语来描述。这个项目涉及以三种不同的方式应用这个想法。第一个涉及使用逻辑方法来分析和提取有用的信息,从不同领域的数学证明。第二种是使用计算机来验证数学论证和计算的正确性,并辅助数学推理。第三是对数学推理方法有更好的历史和哲学理解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jeremy Avigad其他文献
A Formally Verified Proof of the Central Limit Theorem
中心极限定理的正式证明
- DOI:
10.1007/s10817-017-9404-x - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Jeremy Avigad;Johannes Hölzl;Luke Serafin - 通讯作者:
Luke Serafin
The concept of “character” in Dirichlet’s theorem on primes in an arithmetic progression
- DOI:
10.1007/s00407-013-0126-0 - 发表时间:
2013-07-23 - 期刊:
- 影响因子:0.700
- 作者:
Jeremy Avigad;Rebecca Morris - 通讯作者:
Rebecca Morris
Reliability of mathematical inference
- DOI:
10.1007/s11229-019-02524-y - 发表时间:
2020-01-14 - 期刊:
- 影响因子:1.300
- 作者:
Jeremy Avigad - 通讯作者:
Jeremy Avigad
Preface: Selected Extended Papers from Interactive Theorem Proving 2018
- DOI:
10.1007/s10817-020-09557-w - 发表时间:
2020-05-22 - 期刊:
- 影响因子:0.800
- 作者:
Jeremy Avigad;Assia Mahboubi - 通讯作者:
Assia Mahboubi
A Decision Procedure for Linear “Big O” Equations
- DOI:
10.1007/s10817-007-9066-1 - 发表时间:
2007-03-17 - 期刊:
- 影响因子:0.800
- 作者:
Jeremy Avigad;Kevin Donnelly - 通讯作者:
Kevin Donnelly
Jeremy Avigad的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jeremy Avigad', 18)}}的其他基金
Carnegie Mellon Summer School in Logic and Formal Epistemology; Summer of 2009 and 2010; Pittsburgh, PA
卡内基梅隆大学逻辑与形式认识论暑期学校;
- 批准号:
0937208 - 财政年份:2009
- 资助金额:
$ 22.5万 - 项目类别:
Continuing Grant
Carnegie Mellon Summer School in Logic and Formal Epistemology
卡内基梅隆大学逻辑与形式认识论暑期学校
- 批准号:
0713945 - 财政年份:2007
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
Collaborative research: logical support for formal verification
协作研究:形式验证的逻辑支持
- 批准号:
0700174 - 财政年份:2007
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
Carnegie Mellon Summer School in Logic and Formal Epistemology
卡内基梅隆大学逻辑与形式认识论暑期学校
- 批准号:
0612754 - 财政年份:2006
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
collaborative research: theoretical support for mechanized proof assistants
协作研究:机械化证明助手的理论支持
- 批准号:
0401042 - 财政年份:2004
- 资助金额:
$ 22.5万 - 项目类别:
Continuing Grant
Constructive aspects of classical mathematics
古典数学的建设性方面
- 批准号:
0070600 - 财政年份:2000
- 资助金额:
$ 22.5万 - 项目类别:
Continuing Grant
Mathematical Sciences: A Model-Theoretic Approach to Proof Theory
数学科学:证明论的模型理论方法
- 批准号:
9614851 - 财政年份:1996
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
相似国自然基金
基于Genome mining技术研究抑制表皮葡萄球菌生物膜形成的次级代谢产物
- 批准号:21242003
- 批准年份:2012
- 资助金额:10.0 万元
- 项目类别:专项基金项目
相似海外基金
NeTS: Small: NSF-DST: Modernizing Underground Mining Operations with Millimeter-Wave Imaging and Networking
NeTS:小型:NSF-DST:利用毫米波成像和网络实现地下采矿作业现代化
- 批准号:
2342833 - 财政年份:2024
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
Development of social attention indicators of emerging technologies and science policies with network analysis and text mining
利用网络分析和文本挖掘开发新兴技术和科学政策的社会关注指标
- 批准号:
24K16438 - 财政年份:2024
- 资助金额:
$ 22.5万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
ART: Mining the Rich Vein of Research in Montana
艺术:挖掘蒙大拿州研究的丰富脉络
- 批准号:
2331325 - 财政年份:2024
- 资助金额:
$ 22.5万 - 项目类别:
Cooperative Agreement
FightAMR: Novel global One Health surveillance approach to fight AMR using Artificial Intelligence and big data mining
FightAMR:利用人工智能和大数据挖掘对抗 AMR 的新型全球统一健康监测方法
- 批准号:
MR/Y034422/1 - 财政年份:2024
- 资助金额:
$ 22.5万 - 项目类别:
Research Grant
DISES Investigating mercury biogeochemical cycling via mixed-methods in complex artisanal gold mining landscapes and implications for community health
DISES 通过混合方法研究复杂手工金矿景观中的汞生物地球化学循环及其对社区健康的影响
- 批准号:
2307870 - 财政年份:2024
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
Toward carbon-neutral society: Development of a full-sustainable eco-friendly green mining process for gold recovery
迈向碳中和社会:开发完全可持续的环保绿色采矿工艺以回收黄金
- 批准号:
24K17540 - 财政年份:2024
- 资助金额:
$ 22.5万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Generating green hydrogen from mining wastes
从采矿废物中产生绿色氢气
- 批准号:
IM240100202 - 财政年份:2024
- 资助金额:
$ 22.5万 - 项目类别:
Mid-Career Industry Fellowships
Novel Hydrophobic Concrete for Durable and Resilient Mining Infrastructure
用于耐用且有弹性的采矿基础设施的新型疏水混凝土
- 批准号:
LP230100288 - 财政年份:2024
- 资助金额:
$ 22.5万 - 项目类别:
Linkage Projects
SBIR Phase I: Electromagnetic-ablative PGM Refining for In-situ Asteroid Mining
SBIR 第一阶段:用于小行星原位采矿的电磁烧蚀铂族金属精炼
- 批准号:
2327078 - 财政年份:2024
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
Temporal Graph Mining for Anomaly Detection
用于异常检测的时间图挖掘
- 批准号:
DP240101547 - 财政年份:2024
- 资助金额:
$ 22.5万 - 项目类别:
Discovery Projects














{{item.name}}会员




