Verified Computation and Proof
验证计算和证明
基本信息
- 批准号:1615444
- 负责人:
- 金额:$ 14.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2018-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Mathematics is exceedingly complex, and avoiding mistakes is crucial to keeping our mathematics correct, meaningful, and reliable. This project involves the use of logic-based computational methods to support mathematical reasoning. The PI will contribute to the development of a theorem prover called Lean, which can be used to verify complex proofs and calculations. The system enables us to build mathematical libraries that are verified on the basis of a formal axiomatic system, with the computer checking each and every claim on the basis of a small set of axioms and rules. The system will support exploration and the discovery of new mathematics, and can also be used to verify properties of complex systems in computer science, engineering, and finance.The development of Lean is based at Microsoft Research, Redmond, but it is an open-source, community-based project that currently involves researchers at Carnegie Mellon University, Stanford, and the University of Washington as well. The PI will develop Lean's libraries and automation to support applications in fields such as engineering and mathematical finance. Specifically, the PI and his collaborators and students at Carnegie Mellon will extend the libraries for analysis and measure theory and measure-theoretic probability, as well as parts of algebra and homotopy type theory. They will also contribute to other types of automation currently under development in Lean, and develop decision procedures and algorithms for special domains. Finally, they will continue to develop interactive online course material, based on Lean, to provide better educational resources for logic and formal methods.
数学是极其复杂的,避免错误是保持我们的数学正确、有意义和可靠的关键。这个项目涉及使用基于逻辑的计算方法来支持数学推理。PI将有助于开发一个名为Lean的定理证明器,该定理证明器可用于验证复杂的证明和计算。这个系统使我们能够建立数学库,这些库是在一个正式的公理系统的基础上验证的,计算机根据一小组公理和规则来检查每一个断言。该系统将支持探索和发现新的数学,也可用于验证计算机科学、工程和金融领域复杂系统的特性。精益的开发基于微软雷德蒙德研究院,但它是一个开源的、基于社区的项目,目前包括卡内基梅隆大学、斯坦福大学和华盛顿大学的研究人员。PI将开发精益的库和自动化,以支持工程和数学金融等领域的应用。具体来说,PI和他的合作者以及卡内基梅隆大学的学生将扩展分析和测量理论和测量理论概率论的库,以及部分代数和同伦类型理论。他们还将为其他类型的自动化做出贡献,目前正在精益开发中,并为特殊领域开发决策程序和算法。最后,他们将继续开发基于精益的交互式在线课程材料,为逻辑和形式化方法提供更好的教育资源。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jeremy Avigad其他文献
A Formally Verified Proof of the Central Limit Theorem
中心极限定理的正式证明
- DOI:
10.1007/s10817-017-9404-x - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Jeremy Avigad;Johannes Hölzl;Luke Serafin - 通讯作者:
Luke Serafin
The concept of “character” in Dirichlet’s theorem on primes in an arithmetic progression
- DOI:
10.1007/s00407-013-0126-0 - 发表时间:
2013-07-23 - 期刊:
- 影响因子:0.700
- 作者:
Jeremy Avigad;Rebecca Morris - 通讯作者:
Rebecca Morris
Reliability of mathematical inference
- DOI:
10.1007/s11229-019-02524-y - 发表时间:
2020-01-14 - 期刊:
- 影响因子:1.300
- 作者:
Jeremy Avigad - 通讯作者:
Jeremy Avigad
Preface: Selected Extended Papers from Interactive Theorem Proving 2018
- DOI:
10.1007/s10817-020-09557-w - 发表时间:
2020-05-22 - 期刊:
- 影响因子:0.800
- 作者:
Jeremy Avigad;Assia Mahboubi - 通讯作者:
Assia Mahboubi
A Decision Procedure for Linear “Big O” Equations
- DOI:
10.1007/s10817-007-9066-1 - 发表时间:
2007-03-17 - 期刊:
- 影响因子:0.800
- 作者:
Jeremy Avigad;Kevin Donnelly - 通讯作者:
Kevin Donnelly
Jeremy Avigad的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jeremy Avigad', 18)}}的其他基金
Proof Mining and Formal Verification
证明挖掘和形式验证
- 批准号:
1068829 - 财政年份:2011
- 资助金额:
$ 14.98万 - 项目类别:
Continuing Grant
Carnegie Mellon Summer School in Logic and Formal Epistemology; Summer of 2009 and 2010; Pittsburgh, PA
卡内基梅隆大学逻辑与形式认识论暑期学校;
- 批准号:
0937208 - 财政年份:2009
- 资助金额:
$ 14.98万 - 项目类别:
Continuing Grant
Carnegie Mellon Summer School in Logic and Formal Epistemology
卡内基梅隆大学逻辑与形式认识论暑期学校
- 批准号:
0713945 - 财政年份:2007
- 资助金额:
$ 14.98万 - 项目类别:
Standard Grant
Collaborative research: logical support for formal verification
协作研究:形式验证的逻辑支持
- 批准号:
0700174 - 财政年份:2007
- 资助金额:
$ 14.98万 - 项目类别:
Standard Grant
Carnegie Mellon Summer School in Logic and Formal Epistemology
卡内基梅隆大学逻辑与形式认识论暑期学校
- 批准号:
0612754 - 财政年份:2006
- 资助金额:
$ 14.98万 - 项目类别:
Standard Grant
collaborative research: theoretical support for mechanized proof assistants
协作研究:机械化证明助手的理论支持
- 批准号:
0401042 - 财政年份:2004
- 资助金额:
$ 14.98万 - 项目类别:
Continuing Grant
Constructive aspects of classical mathematics
古典数学的建设性方面
- 批准号:
0070600 - 财政年份:2000
- 资助金额:
$ 14.98万 - 项目类别:
Continuing Grant
Mathematical Sciences: A Model-Theoretic Approach to Proof Theory
数学科学:证明论的模型理论方法
- 批准号:
9614851 - 财政年份:1996
- 资助金额:
$ 14.98万 - 项目类别:
Standard Grant
相似国自然基金
基于分位数g-computation的多污染物联合空气质量健康指数构建及预测效果评价
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于g-computation控制纵向数据未测混杂因素的因果推断模型构建及应用研究
- 批准号:81903416
- 批准年份:2019
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Realizing Proof-of-Work through arbitrary computation for a sustainable society
通过任意计算实现工作量证明以实现可持续发展的社会
- 批准号:
20K21795 - 财政年份:2020
- 资助金额:
$ 14.98万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
TWC: Medium: Scaling proof-based verifiable computation
TWC:中:扩展基于证明的可验证计算
- 批准号:
1514422 - 财政年份:2015
- 资助金额:
$ 14.98万 - 项目类别:
Standard Grant
Proof complexity, computation, and algorithms
证明复杂性、计算和算法
- 批准号:
0700533 - 财政年份:2007
- 资助金额:
$ 14.98万 - 项目类别:
Continuing Grant
A study of proof theory and theory of computation in a type-theoretical approach
用类型论方法研究证明论和计算理论
- 批准号:
12640107 - 财政年份:2000
- 资助金额:
$ 14.98万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Randomness in Computation and Proof
计算和证明中的随机性
- 批准号:
9503322 - 财政年份:1995
- 资助金额:
$ 14.98万 - 项目类别:
Continuing grant
Probabilistic Computation and Interactive Proof Systems
概率计算和交互式证明系统
- 批准号:
9009936 - 财政年份:1990
- 资助金额:
$ 14.98万 - 项目类别:
Standard Grant














{{item.name}}会员




