A Lattice Boltzmann Based Model for Predicting Unsaturated Flow through Soil Macropores and Capillary Pores
基于格子玻尔兹曼的预测土壤大孔和毛细孔不饱和流的模型
基本信息
- 批准号:1100020
- 负责人:
- 金额:$ 21.16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-04-01 至 2014-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The key objective of this project is to couple the Richards Equation based unsaturated flow in capillary pores of soils with flow through macropores using the Navier-Stokes Equations solved using the Lattice-Boltzmann (LB) Method for two phase (liquid and gas) flow. Because computationally efficient mechanistically-based models do not exist, groundwater recharge, or deep drainage estimates, or gas emissions from landfills are often carried out by ignoring preferential flow or by modeling it empirically. Dual permeability models simulate macropore flow by specifying separate sets of unsaturated properties to the micro and macro pores. However, the flow through macropores does not follow Darcian flow and assumes all macropores are connected as a continuum while often macropores are discrete and disconnected. The central idea behind the model to be developed in this project is that flow through macropores is similar to flow in conduits having irregular shapes and hence Navier Stokes equations are more appropriate and are numerically stable when solved using the Lattice-Boltzmann method. With the advances in digital X-ray CT imaging techniques, it is now possible to have pore structure of soils characterized relatively quickly and economically. Hence, a model that can take advantage of such high resolution pore structure data can revolutionize the way we estimate long-term liquid percolation into landfills or gas emissions from landfills. The macro pore and micro pore structure in the soil system will be digitally input to the model using X-ray Computed Tomography (CT) image data for soil samples collected from instrumented field-scale clay caps to validate the modeling approach. High-resolution water balance data has been collected over a period of three years from two field-scale clay cap test sections located at a landfill in Detroit. The conventional physically-based numerical models can capture the unsaturated flow through capillary or micropores relatively accurately. However, they cannot model flow through macropores which are formed and continuously evolve due to inadequate compaction, desiccation cracking, freeze/thaw, root penetration, and rodent activity. The model that will be developed will overcome the challenge of modeling liquid or gas flow through macropores. A numerical model that takes advantage of recent advances in X-ray imagining of soil structure for modeling flow through soils will provide practitioners and regulators a tool to accurately predict long-term deep drainage into ground water systems of environmental significance or green-house gas emissions from landfills. A course module on migration of liquids and gases from waste sites will be prepared for an undergraduate landfill design class and a course module containing theory and lab experimentation to demonstrate preferential flow through soils will be prepared and introduced in a graduate level course. Outreach to high school students during summer training camps will carried out with hands-on demonstrations at Michigan State University.
该项目的主要目标是耦合理查兹方程为基础的非饱和流在毛细孔的土壤与流动通过大孔使用Navier-Stokes方程求解使用格子玻尔兹曼(LB)方法的两相流(液体和气体)。 由于计算效率高的机械模型不存在,地下水补给,或深排水的估计,或从垃圾填埋场的气体排放量往往是通过忽略优先流或通过模拟经验。 双渗透率模型通过对微观孔隙和宏观孔隙指定单独的非饱和性质来模拟大孔隙流动。 然而,通过大孔的流动并不遵循达西流动,而是假设所有的大孔作为连续体连接,而大孔通常是离散和断开的。 在这个项目中开发的模型背后的中心思想是,通过大孔的流动类似于具有不规则形状的管道中的流动,因此Navier Stokes方程更合适,并且在使用Lattice-Boltzmann方法求解时数值稳定。 随着数字化X射线CT成像技术的发展,现在可以相对快速和经济地表征土壤的孔隙结构。 因此,可以利用这种高分辨率孔隙结构数据的模型可以彻底改变我们估计长期液体渗透到垃圾填埋场或垃圾填埋场气体排放的方式。 土壤系统中的宏观孔隙和微观孔隙结构将被数字化输入到模型中,使用X射线计算机断层扫描(CT)图像数据从现场规模的粘土帽收集的土壤样品,以验证建模方法。 高分辨率的水平衡数据已收集了为期三年的两个领域规模的粘土盖测试部分位于底特律的垃圾填埋场。传统的基于物理的数值模型可以相对准确地捕捉通过毛细管或微孔的非饱和流。 然而,它们不能模拟通过大孔的流动,大孔是由于压实不充分、干燥开裂、冻/融、根部渗透和啮齿动物活动而形成并不断演变的。 将要开发的模型将克服模拟通过大孔隙的液体或气体流动的挑战。一个数值模型,利用最新进展的X射线成像的土壤结构模拟通过土壤的流动将提供从业者和监管机构的工具,以准确地预测长期深排水到地下水系统的环境意义或温室气体排放的垃圾填埋场。 将为本科生垃圾填埋场设计课程准备一个关于废物场液体和气体迁移的课程模块,并将在研究生课程中准备和介绍一个包含理论和实验室实验的课程模块,以证明优先流过土壤。在夏季训练营期间,将在密歇根州立大学通过实际操作示范向高中生进行宣传。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Milind Khire其他文献
Milind Khire的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Milind Khire', 18)}}的其他基金
Sensing, Analyzing, and Forecasting Evaluation (SAFE) System for Bioreactor Landfills
生物反应器垃圾填埋场传感、分析和预测评估 (SAFE) 系统
- 批准号:
0510091 - 财政年份:2005
- 资助金额:
$ 21.16万 - 项目类别:
Continuing Grant
SGER: Lab-Scale Evaluation of Electro Chemical Remediation of a Contaminated Clayey Soil Using Alternating Current Electrical Signal
SGER:使用交流电信号对受污染粘土进行电化学修复的实验室规模评估
- 批准号:
0402772 - 财政年份:2004
- 资助金额:
$ 21.16万 - 项目类别:
Standard Grant
Evaluation of Landfill Gas Emissions from an Instrumented Bioreactor Landfill Cell
仪表化生物反应器垃圾填埋场垃圾填埋气体排放的评估
- 批准号:
0334940 - 财政年份:2003
- 资助金额:
$ 21.16万 - 项目类别:
Standard Grant
相似国自然基金
反应堆时域-频域中子噪声模拟的格子
Boltzmann方法研究
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
角度非截断量子Boltzmann方程的数学理论研究
- 批准号:
- 批准年份:2024
- 资助金额:15.0 万元
- 项目类别:省市级项目
Landau方程和Vlasov-Poisson-Boltzmann方程组解的适定性和收敛率的研究
- 批准号:12301284
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于格子Boltzmann方法和深度学习的多相渗流多尺度模型和机理研究
- 批准号:52376068
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
孔隙尺度下多相多组分复杂流体相变传热的格子Boltzmann方法及其应用研究
- 批准号:12372286
- 批准年份:2023
- 资助金额:52.00 万元
- 项目类别:面上项目
Debye-Yukawa势模型下的Boltzmann方程测度值解的研究
- 批准号:12301276
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于格子Boltzmann方法的粉末床熔融过程介观建模与仿真
- 批准号:12302373
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
激波与流体界面相互作用的格子Boltzmann方法建模及数值研究
- 批准号:12302384
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相对论Boltzmann方程的牛顿极限与流体动力学极限
- 批准号:12361045
- 批准年份:2023
- 资助金额:27 万元
- 项目类别:地区科学基金项目
考虑自由表面流动特性的固液相变格子 Boltzmann 方法建模及仿真
- 批准号:2022JJ40466
- 批准年份:2022
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Adjoint sensitivity analysis based on lattice Boltzmann method for flow-induced sound problems
基于格子玻尔兹曼法的流致声问题伴随灵敏度分析
- 批准号:
20K22397 - 财政年份:2020
- 资助金额:
$ 21.16万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Electron heating in capacitive RF plasmas based on moments of the Boltzmann equation: From fundamental understanding to predictive control
基于玻尔兹曼方程矩的电容式射频等离子体中的电子加热:从基本理解到预测控制
- 批准号:
428942393 - 财政年份:2019
- 资助金额:
$ 21.16万 - 项目类别:
Research Grants
Speech Representation Using Emotion-Speaker Controllable Probabilistic Model Based on Extended Boltzmann Distribution
基于扩展玻尔兹曼分布的情绪说话者可控概率模型的语音表示
- 批准号:
18K18069 - 财政年份:2018
- 资助金额:
$ 21.16万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Soft, Structured Layers on the Surface of a Quartz Crystal Microbalance (QCM): A Computational Model to Predict Shifts of Frequency and Bandwidth Based on the Lattice-Boltzmann Method
石英晶体微天平 (QCM) 表面的软结构化层:基于格子-玻尔兹曼方法预测频率和带宽变化的计算模型
- 批准号:
324062370 - 财政年份:2017
- 资助金额:
$ 21.16万 - 项目类别:
Research Grants
Hybrid topology optimization for thermal fluid devices based on the lattice Boltzmann method
基于格子玻尔兹曼方法的热流体装置混合拓扑优化
- 批准号:
26820032 - 财政年份:2014
- 资助金额:
$ 21.16万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Lattice boltzmann based simulation of blood vessel normalization in tumors
基于格子玻尔兹曼的肿瘤血管正常化模拟
- 批准号:
215021554 - 财政年份:2012
- 资助金额:
$ 21.16万 - 项目类别:
Research Fellowships
Development of a dose calculation method and a treatment planning system for radiotherapy based on the Boltzmann transport equation
基于玻尔兹曼输运方程的放射治疗剂量计算方法和治疗计划系统的开发
- 批准号:
23791449 - 财政年份:2011
- 资助金额:
$ 21.16万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Optimal Treatment Planning in Radiotherapy based on Boltzmann Transport Equations
基于玻尔兹曼传输方程的放射治疗最优治疗规划
- 批准号:
130542091 - 财政年份:2009
- 资助金额:
$ 21.16万 - 项目类别:
Priority Programmes
Lattice Boltzmann method based simulation of complex microchannels and mixing at micro-scales
基于格子玻尔兹曼方法的复杂微通道和微尺度混合的模拟
- 批准号:
DP0557648 - 财政年份:2005
- 资助金额:
$ 21.16万 - 项目类别:
Discovery Projects
Study on a Gridless Solver for Micro-Scale Flows based on the Boltzmann Equation
基于Boltzmann方程的微尺度流动无网格求解器研究
- 批准号:
15560140 - 财政年份:2003
- 资助金额:
$ 21.16万 - 项目类别:
Grant-in-Aid for Scientific Research (C)