Complexity of proofs, proof search, and algorithmic complexity

证明的复杂性、证明搜索和算法的复杂性

基本信息

  • 批准号:
    1101228
  • 负责人:
  • 金额:
    $ 21万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-09-01 至 2016-08-31
  • 项目状态:
    已结题

项目摘要

This project supports research by Professor Buss and his graduate students in logic and computational complexity, particularly in computational complexity, propositional proof complexity, bounded arithmetic, randomness and approximation, and algorithm design. The central research topics concern propositional proof complexity and its interplay with computational complexity and first-order arithmetic. Propositional proof complexity forms a basis for nearly all formal systems that support logical reasoning and inference. Many aspects of proof complexity and weak theories of first-order arithmetic connect to open problems in computational complexity, including the P versus NP problem, questions about counting and derandomization, and open cryptographic questions about pseudorandom number generators. The PI will work to extend lower bounds on deterministic algorithms for satisfiability and other hard problems. His research will explore the mathematical foundations of proof search. He will develop and test new algorithms for propositional proof search. He will work on new witnessing algorithms for fragments of bounded arithmetic, such as logics that correspond to polynomial space reasoning. He will work to prove new independence results and separation results for weak proof systems. He will work on complexity lower bounds, especially for space-restricted computation.Mathematical research on proof theory, logic, and algorithms has the goal of improving our understanding of fundamental limitations of feasible computability, feasible provability, and the mathematical security of cryptographic algorithms. The project supports the research of the PI and his students on these mathematical aspects of complexity of proofs and algorithms, with particular emphasis on establishing the complexity required for proofs and computations. The PI will also develop and evaluate new algorithms for satisfiability. These algorithms are the logical core of most presently deployed systems for software and hardware verification, and are an important part of several major research efforts to produce verifiably correct software and hardware. The project supports education and student research training in mathematics and computer science, especially in the methods and theory of computational complexity and mathematical logic.
该项目支持Buss教授和他的研究生在逻辑和计算复杂性方面的研究,特别是在计算复杂性,命题证明复杂性,有界算术,随机性和近似以及算法设计方面。中心研究课题涉及命题证明复杂性及其与计算复杂性和一阶算术的相互作用。命题证明复杂性构成了几乎所有支持逻辑推理和推断的形式系统的基础。证明复杂性和一阶算术的弱理论的许多方面都与计算复杂性中的开放问题有关,包括P对NP问题,计数和去随机化问题,以及关于伪随机数生成器的开放密码学问题。PI将致力于扩展可满足性和其他困难问题的确定性算法的下限。他的研究将探索证明搜索的数学基础。他将开发和测试命题证明搜索的新算法。他将致力于有界算术片段的新见证算法,例如对应于多项式空间推理的逻辑。他将致力于证明新的独立性结果和分离结果的弱证明系统。他将致力于复杂性下界,特别是空间受限的计算。证明论,逻辑和算法的数学研究的目标是提高我们对可行可计算性,可行可证明性和密码算法的数学安全性的基本限制的理解。该项目支持PI及其学生对证明和算法复杂性的数学方面的研究,特别强调建立证明和计算所需的复杂性。PI还将开发和评估新的可满足性算法。这些算法是大多数目前部署的软件和硬件验证系统的逻辑核心,并且是产生可验证正确的软件和硬件的几个主要研究工作的重要部分。该项目支持数学和计算机科学的教育和学生研究培训,特别是计算复杂性和数理逻辑的方法和理论。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Samuel Buss其他文献

Samuel Buss的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Samuel Buss', 18)}}的其他基金

St. Petersburg Special Complexity Semester and Workshops
圣彼得堡特殊复杂性学期和研讨会
  • 批准号:
    1565931
  • 财政年份:
    2016
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
Proof complexity, computation, and algorithms
证明复杂性、计算和算法
  • 批准号:
    0700533
  • 财政年份:
    2007
  • 资助金额:
    $ 21万
  • 项目类别:
    Continuing Grant
Proof Complexity and Computation
证明复杂性和计算
  • 批准号:
    0400848
  • 财政年份:
    2004
  • 资助金额:
    $ 21万
  • 项目类别:
    Continuing Grant
Proof Theory and Computational Complexity
证明理论和计算复杂性
  • 批准号:
    0100589
  • 财政年份:
    2001
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
Proof Theory and Computational Complexity
证明理论和计算复杂性
  • 批准号:
    9803515
  • 财政年份:
    1998
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
U.S.-Czech Research on Mathematical Logic, Complexity Theory, and Connections
美国-捷克数理逻辑、复杂性理论和联系研究
  • 批准号:
    9600919
  • 财政年份:
    1996
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
GIG: Multidisciplinary Research in Mathematics
GIG:数学的多学科研究
  • 批准号:
    9510373
  • 财政年份:
    1995
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Proof Theory and Computational Complexity
数学科学:证明理论和计算复杂性
  • 批准号:
    9503247
  • 财政年份:
    1995
  • 资助金额:
    $ 21万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Proof Theory and Computational Complexity
数学科学:证明理论和计算复杂性
  • 批准号:
    9205181
  • 财政年份:
    1992
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Proof Theory and Computational Complexity
数学科学:证明理论和计算复杂性
  • 批准号:
    8902480
  • 财政年份:
    1989
  • 资助金额:
    $ 21万
  • 项目类别:
    Continuing Grant

相似海外基金

Structure vs Invariants in Proofs (StrIP)
证明中的结构与不变量 (StrIP)
  • 批准号:
    MR/Y011716/1
  • 财政年份:
    2024
  • 资助金额:
    $ 21万
  • 项目类别:
    Fellowship
CAREER:Exploring the power of quantum protocols for interactive proofs
职业:探索量子协议用于交互式证明的力量
  • 批准号:
    2339948
  • 财政年份:
    2024
  • 资助金额:
    $ 21万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2245017
  • 财政年份:
    2023
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
SHF: SMALL: Language-agnostic Proofs
SHF:SMALL:与语言无关的证明
  • 批准号:
    2317257
  • 财政年份:
    2023
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
Computer-assisted Proofs in Fluid Mechanics and Applications
流体力学及其应用中的计算机辅助证明
  • 批准号:
    2247537
  • 财政年份:
    2023
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
CAREER: Cryptographic Proofs, Outside the Black-Box
职业:黑匣子之外的密码学证明
  • 批准号:
    2238718
  • 财政年份:
    2023
  • 资助金额:
    $ 21万
  • 项目类别:
    Continuing Grant
Improvement of Security Proofs for Signature Schemes Based on Non-Interactive Assumptions
基于非交互假设的签名方案安全证明改进
  • 批准号:
    23K16841
  • 财政年份:
    2023
  • 资助金额:
    $ 21万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2244879
  • 财政年份:
    2023
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
CISE-ANR: SHF: Small: Scenario-based Formal Proofs for Concurrent Software
CISE-ANR:SHF:小型:并发软件的基于场景的形式化证明
  • 批准号:
    2315363
  • 财政年份:
    2023
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
SHF:Small: Extensible Models and Proofs via Family Polymorphism
SHF:Small:通过族多态性的可扩展模型和证明
  • 批准号:
    2303983
  • 财政年份:
    2023
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了