Proof Complexity and Computation
证明复杂性和计算
基本信息
- 批准号:0400848
- 负责人:
- 金额:$ 20.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-07-01 至 2007-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project supports research by Buss and his graduatestudents on computational complexity, proof complexity,algorithms, and numerical methods. Buss investigates proof theoryand proof complexity, especially aspects that are closely connectedto open problems in computational complexity including theP versus NP problem. The relevant proof systems includebounded arithmetics, which are first-order theories tailored to havelogical strength related to feasible computability, andpropositional proof systems, which have rich connections to boundedarithmetic and circuit complexity. Buss will work to establishlower bounds on proof complexity based on complexity assumptionssuch as the existence of provably secure cryptographic systems.He will work to prove new independence results and separationresults for weak proof systems. He will investigate what kindsof computational content can be extracted from proofs.Buss will investigate the proof complexity of propositional systems such asFrege systems, cutting planes systems, Nullstellensatz proof systems,counting axioms, the polynomial calculus, and intuitionistic proof systems.Buss also works on numerical and geometric algorithms arisingfrom computer graphics. He will work on simulation methods forrigid multibodies using higher-order approximation methods overmanifolds, on symplectic algorithms and other energy-conservingalgorithms for physical simulations, and on collision responsealgorithms.The main part of this research lies at the interface between mathematics and computer science and is motivated by open questions concerning the fundamental limits of computation. These open questions include the P versus NP problem, the mathematicalfeasibility of secure cryptographic coding, and the optimalityof particular algorithms and circuits for solving combinatorial problems.This project addresses these questions by investigating computationalcomplexity and proof complexity. Lower and upper bounds onproof complexity are closely related to upper and lower boundson the hardness of computation. This in turn is closelyrelated to the mathematical underpinnings of crytography.
该项目支持巴斯和他的研究生在计算复杂性、证明复杂性、算法和数值方法方面的研究。Bus研究了证明理论和证明复杂性,特别是在计算复杂性方面与公开问题密切相关的方面,包括Thep与NP问题。相关的证明系统包括有界算术和命题证明系统,前者是为具有与可行可计算性相关的逻辑强度而定制的一阶理论,后者与有界算术和电路复杂性有着丰富的联系。Bus将致力于基于复杂性假设(例如存在可证明安全的密码系统)来建立证明复杂性的下界。他将致力于证明弱证明系统的新的独立结果和分离结果。他将研究从证明中可以提取哪些类型的计算内容。巴斯将研究命题系统的证明复杂性,如Frege系统、割平面系统、Nullstellensz证明系统、计数公理、多项式演算和直觉证明系统。Buss还研究源于计算机图形学的数值和几何算法。他将致力于刚性多体的高阶超流形模拟方法,物理模拟的辛算法和其他能量守恒算法,以及碰撞响应算法。这项研究的主要部分位于数学和计算机科学之间的界面上,并受到有关计算基本极限的开放问题的推动。这些悬而未决的问题包括P与NP问题,安全密码编码的数学可行性,以及解决组合问题的特定算法和电路的最优化。本项目通过调查计算复杂性和证明复杂性来解决这些问题。证明复杂性的上下界与计算难度的上下界密切相关。这反过来又与密码学的数学基础密切相关。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Samuel Buss其他文献
Samuel Buss的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Samuel Buss', 18)}}的其他基金
St. Petersburg Special Complexity Semester and Workshops
圣彼得堡特殊复杂性学期和研讨会
- 批准号:
1565931 - 财政年份:2016
- 资助金额:
$ 20.7万 - 项目类别:
Standard Grant
Complexity of proofs, proof search, and algorithmic complexity
证明的复杂性、证明搜索和算法的复杂性
- 批准号:
1101228 - 财政年份:2011
- 资助金额:
$ 20.7万 - 项目类别:
Standard Grant
Proof complexity, computation, and algorithms
证明复杂性、计算和算法
- 批准号:
0700533 - 财政年份:2007
- 资助金额:
$ 20.7万 - 项目类别:
Continuing Grant
Proof Theory and Computational Complexity
证明理论和计算复杂性
- 批准号:
0100589 - 财政年份:2001
- 资助金额:
$ 20.7万 - 项目类别:
Standard Grant
Proof Theory and Computational Complexity
证明理论和计算复杂性
- 批准号:
9803515 - 财政年份:1998
- 资助金额:
$ 20.7万 - 项目类别:
Standard Grant
U.S.-Czech Research on Mathematical Logic, Complexity Theory, and Connections
美国-捷克数理逻辑、复杂性理论和联系研究
- 批准号:
9600919 - 财政年份:1996
- 资助金额:
$ 20.7万 - 项目类别:
Standard Grant
GIG: Multidisciplinary Research in Mathematics
GIG:数学的多学科研究
- 批准号:
9510373 - 财政年份:1995
- 资助金额:
$ 20.7万 - 项目类别:
Standard Grant
Mathematical Sciences: Proof Theory and Computational Complexity
数学科学:证明理论和计算复杂性
- 批准号:
9503247 - 财政年份:1995
- 资助金额:
$ 20.7万 - 项目类别:
Continuing Grant
Mathematical Sciences: Proof Theory and Computational Complexity
数学科学:证明理论和计算复杂性
- 批准号:
9205181 - 财政年份:1992
- 资助金额:
$ 20.7万 - 项目类别:
Standard Grant
U.S.-Czechoslovak Research on Proof Theory and Fragments of Arithmetic
美国-捷克斯洛伐克关于证明论和算术片段的研究
- 批准号:
8914569 - 财政年份:1989
- 资助金额:
$ 20.7万 - 项目类别:
Standard Grant
相似海外基金
Quantum Information, Computation, and Complexity
量子信息、计算和复杂性
- 批准号:
RGPIN-2019-03949 - 财政年份:2022
- 资助金额:
$ 20.7万 - 项目类别:
Discovery Grants Program - Individual
A new low-complexity paradigm for analogue computation and hardware learning
用于模拟计算和硬件学习的新的低复杂度范式
- 批准号:
EP/V002759/1 - 财政年份:2021
- 资助金额:
$ 20.7万 - 项目类别:
Fellowship
Quantum Information, Computation, and Complexity
量子信息、计算和复杂性
- 批准号:
RGPIN-2019-03949 - 财政年份:2021
- 资助金额:
$ 20.7万 - 项目类别:
Discovery Grants Program - Individual
Quantum Information, Computation, and Complexity
量子信息、计算和复杂性
- 批准号:
RGPIN-2019-03949 - 财政年份:2020
- 资助金额:
$ 20.7万 - 项目类别:
Discovery Grants Program - Individual
Quantum computation: through the algorithm and complexity theory lens
量子计算:通过算法和复杂性理论镜头
- 批准号:
DP200100950 - 财政年份:2020
- 资助金额:
$ 20.7万 - 项目类别:
Discovery Projects
Quantum Information, Computation, and Complexity
量子信息、计算和复杂性
- 批准号:
RGPIN-2019-03949 - 财政年份:2019
- 资助金额:
$ 20.7万 - 项目类别:
Discovery Grants Program - Individual
Algorithms and Complexity of Distributed Computation
分布式计算的算法和复杂性
- 批准号:
RGPIN-2014-04739 - 财政年份:2018
- 资助金额:
$ 20.7万 - 项目类别:
Discovery Grants Program - Individual
Theory of Parameterized Complexity for Local Search-Type Computation
局部搜索型计算的参数化复杂度理论
- 批准号:
17H01698 - 财政年份:2017
- 资助金额:
$ 20.7万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Algorithms and Complexity of Distributed Computation
分布式计算的算法和复杂性
- 批准号:
RGPIN-2014-04739 - 财政年份:2017
- 资助金额:
$ 20.7万 - 项目类别:
Discovery Grants Program - Individual
Finite-length analysis with computation complexity
计算复杂度有限长度分析
- 批准号:
17H01280 - 财政年份:2017
- 资助金额:
$ 20.7万 - 项目类别:
Grant-in-Aid for Scientific Research (A)