Collaborative Research in the Mathematical, Computational and Experimental Modeling of the Multidisciplinary Dynamics of Fluid-Structure Interaction
流固耦合多学科动力学的数学、计算和实验建模合作研究
基本信息
- 批准号:1101431
- 负责人:
- 金额:$ 17.72万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-09-01 至 2013-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Objective and Intellectual Merits: In an age where multidisciplinary interactions have become ubiquitous in science and engineering, the interaction of a flowing fluid and a deformable structure or solid is one of the richest sources of mathematical challenges and fundamental physical phenomena with important applications to engineering and technology. Examples of mathematical challenges are the chaotic, high dimensional modeling of turbulence that continues to defy rationale predictions from first principles to the many distinct and complex limit cycle oscillations that emerge from dynamic stabilities that arise due to fluid-structure interaction. The physical phenomena of interest range from blood flows in arteries, to airflow over an oscillating tongue that can lead to clinical dangerous and potentially fatal oscillations, to flow over flexible long span bridges and tall buildings, to flow over and around flight vehicles over a wide range of scales from micro air vehicles to modern passenger airliners, to fluid-structural systems whose limit cycles may be a source of energy harvesting. The methods that have been proposed to better understand and exploit these phenomena include theoretical models of high sophistication including the continuum models of the fluid and the structure. While analytical solutions continue to be sought and found, computational models that tax the resources of the most powerful computers also play an important role as do scale model experiments based upon a sound fundamental analysis and understanding of the first principles of the relevant continuum models. Indeed it is by exploiting the complementary strengths of each approach, theoretical modeling, computational modeling and experimental scale models that the deepest and richest insights can be obtained. Such a collaborative approach is proposed here. Professor Balakrishnan will lead the theoretical modeling effort, Professor Hodges will be primarily responsible for the computational models and Professor Dowell will be the lead for the experimental scale model effort. Taken together this will be a powerful and highly experienced team It is expected that each investigator and the members of their research teams will learn much about the multidisciplinary dynamics of fluid-structure interaction, and also from each other! There are many physical phenomena that might be chosen to focus our research program. Based upon our experience and after consultation among the principals, two have been chosen for this research project, i.e. long span wing-like structures in a flowing fluid which are found in novel flight vehicle designs and long span bridges and flapping ?flags? which are studies as models of the human tongue and also have been proposed as energy harvesting devices from the natural wind. Broader Impact: This proposal brings together senior investigators from three major research institutions covering a wide range of intellectual experience from modern mathematics to rigorously based computational models to multidisciplinary experiments to address fluid-structure interaction phenomena. This research will also provide an opportunity for graduate students and post-doctoral visitors to participate and learn in this rich environment.
目标和智力优势:在多学科相互作用在科学和工程中无处不在的时代,流动流体和可变形结构或固体的相互作用是数学挑战和基本物理现象的最丰富来源之一,在工程和技术中具有重要应用。数学挑战的例子是湍流的混沌、高维建模,其继续挑战从第一原理到许多不同且复杂的极限环振荡的基本预测,所述极限环振荡出现于由于流体-结构相互作用而产生的动态稳定性。感兴趣的物理现象范围从动脉中的血液流动,到可能导致临床危险和潜在致命振荡的振荡舌头上的气流,到柔性大跨度桥梁和高层建筑上的流动,到从微型航空器到现代客机的各种规模的飞行器上和周围的流动,到极限环可能是能量收集来源的流体结构系统。已经提出的方法,以更好地理解和利用这些现象,包括理论模型的高度复杂性,包括连续模型的流体和结构。虽然分析的解决方案继续寻求和发现,计算模型的税收最强大的计算机的资源也发挥了重要的作用,做规模的模型实验的基础上健全的基本分析和相关的连续模型的第一原则的理解。事实上,正是通过利用每种方法的互补优势,理论建模,计算建模和实验规模模型,可以获得最深刻和最丰富的见解。在此提出了这样一种合作方式。Balakrishnan教授将领导理论建模工作,Hodges教授将主要负责计算模型,Dowell教授将领导实验规模的模型工作。总的来说,这将是一个强大的和经验丰富的团队,预计每个研究人员和他们的研究团队的成员将学习很多关于流体-结构相互作用的多学科动力学,也从对方!有许多物理现象可以选择来集中我们的研究计划。根据我们的经验,并经过磋商的校长,两个已被选为本研究项目,即大跨度翼状结构在流动的流体中发现,在新的飞行器设计和大跨度桥梁和扑?旗子?其被研究为人类舌头的模型,并且还被提出作为来自自然风的能量收集装置。更广泛的影响:该提案汇集了来自三个主要研究机构的高级研究人员,涵盖了从现代数学到严格的计算模型到多学科实验的广泛知识经验,以解决流体-结构相互作用现象。这项研究也将为研究生和博士后访问者提供一个参与和学习的机会。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dewey Hodges其他文献
Dewey Hodges的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dewey Hodges', 18)}}的其他基金
Collaborative Research: Power Generation from Fluid-Structure Interaction using Mathematical, Computational and Experimental Modeling
合作研究:利用数学、计算和实验模型通过流固耦合发电
- 批准号:
1306436 - 财政年份:2013
- 资助金额:
$ 17.72万 - 项目类别:
Standard Grant
Development of Space-Time Finite Elements for Nonlinear Transient Response of Flexible Structures
柔性结构非线性瞬态响应时空有限元的发展
- 批准号:
8822003 - 财政年份:1989
- 资助金额:
$ 17.72万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Conference: Great Lakes Mathematical Physics Meetings 2024-2025
合作研究:会议:2024-2025 年五大湖数学物理会议
- 批准号:
2401257 - 财政年份:2024
- 资助金额:
$ 17.72万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
- 批准号:
2343599 - 财政年份:2024
- 资助金额:
$ 17.72万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
- 批准号:
2343600 - 财政年份:2024
- 资助金额:
$ 17.72万 - 项目类别:
Standard Grant
Collaborative Research: Conference: Mathematical Sciences Institutes Diversity Initiative
合作研究:会议:数学科学研究所多样性倡议
- 批准号:
2317573 - 财政年份:2024
- 资助金额:
$ 17.72万 - 项目类别:
Continuing Grant
Collaborative Research: Conference: Mathematical Sciences Institutes Diversity Initiative
合作研究:会议:数学科学研究所多样性倡议
- 批准号:
2317570 - 财政年份:2024
- 资助金额:
$ 17.72万 - 项目类别:
Continuing Grant
Collaborative Research: Conference: Great Lakes Mathematical Physics Meetings 2024-2025
合作研究:会议:2024-2025 年五大湖数学物理会议
- 批准号:
2401258 - 财政年份:2024
- 资助金额:
$ 17.72万 - 项目类别:
Standard Grant
Collaborative Research: Conference: Mathematical Sciences Institutes Diversity Initiative
合作研究:会议:数学科学研究所多样性倡议
- 批准号:
2317572 - 财政年份:2024
- 资助金额:
$ 17.72万 - 项目类别:
Continuing Grant
Collaborative Research: Conference: Mathematical Sciences Institutes Diversity Initiative
合作研究:会议:数学科学研究所多样性倡议
- 批准号:
2317569 - 财政年份:2024
- 资助金额:
$ 17.72万 - 项目类别:
Continuing Grant
Collaborative Research: Conference: Mathematical Sciences Institutes Diversity Initiative
合作研究:会议:数学科学研究所多样性倡议
- 批准号:
2317571 - 财政年份:2024
- 资助金额:
$ 17.72万 - 项目类别:
Standard Grant
Collaborative Research: Supporting Pre-Service Teachers Mathematical Discourse through Co-Design of Teaching Simulation Tools
协作研究:通过教学模拟工具的共同设计支持职前教师的数学话语
- 批准号:
2315437 - 财政年份:2023
- 资助金额:
$ 17.72万 - 项目类别:
Standard Grant