DOUBLE AFFINE HECKE ALGEBRAS
双仿射赫克代数
基本信息
- 批准号:1101535
- 负责人:
- 金额:$ 17万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-06-01 至 2015-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The aim of the project is to study double affine Hecke algebras introduced by PI. They proved to be very useful in the representation theory and found many applications in mathematics and physics. The area of the algebraic analysis and its applications is the major theme of the project, including the harmonic analysis on symmetric spaces, the theory of hypergeometric, spherical and Whittaker functions. The theory of the difference counterparts of these functions, called ``global functions" due to their universality and excellent analytic properties, is one of the greatest applications of double affine Hecke algebras obtained by PI, Stokman and other researches. The global q-Whittaker functions have and expected to have multiple applications, including the Givental-Lee theory and the quantum Langlands program; the corresponding theory of nil-DAHA is very fruitful.The theory of DAHA is a breakthrough development in the geometric, analytic and physically-inspired representation theory, which demonstrates the power of p-adic methods and tremendous potential of the q-functions. The directions of the project are mainly grouped around PI's theory of global difference spherical and Whittaker functions. There are important relations (known and expected) of these functions to the theory of homogeneous spaces of loop groups and (hopefully) to the geometric quantum Langlands program. The first results concerning the behavior of these functions at some special cases are an indication of their significance for the Number Theory. Also, these functions are expected to serve recent physics theories employing the integrability of the various quantum many-body problems.
该项目的目的是研究由PI引入的双仿射Hecke代数。事实证明,它们在表示论中非常有用,并在数学和物理中得到了许多应用。代数分析及其应用领域是该项目的主要主题,包括对称空间的调和分析,超几何,球面和惠特克函数理论。这些函数的差对应理论由于其普遍性和优良的解析性质而被称为“整体函数”,是PI,Stokman等研究者对双仿射Hecke代数的最大应用之一。整体q-Whittaker函数有着广泛的应用前景,包括Givental-Lee理论和量子Langlands计划,相应的nil-DAHA理论也取得了丰硕的成果,DAHA理论是几何表示论、解析表示论和物理表示论的突破性发展,充分展示了p-adic方法的强大功能和q-函数的巨大潜力。该项目的方向主要围绕PI的全局差分球面和Whittaker函数理论进行分组。有重要的关系(已知和预期),这些职能的理论齐性空间的循环群和(希望)的几何量子朗兰兹计划。关于这些函数在某些特殊情况下的行为的第一个结果表明了它们对数论的意义。此外,这些功能预计将服务于最近的物理理论采用的各种量子多体问题的可积性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ivan Cherednik其他文献
Ivan Cherednik的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ivan Cherednik', 18)}}的其他基金
Double Hecke Algebras and Applications
双赫克代数及其应用
- 批准号:
0200276 - 财政年份:2002
- 资助金额:
$ 17万 - 项目类别:
Continuing Grant
Hecke Algebras, MacDonald Polynomials, and Applications
赫克代数、麦克唐纳多项式及其应用
- 批准号:
9622829 - 财政年份:1996
- 资助金额:
$ 17万 - 项目类别:
Standard Grant
Mathematical Sciences: Hecke Algebras, MacDonald's Polynomials, and Conformal Field Theory
数学科学:赫克代数、麦克唐纳多项式和共形场论
- 批准号:
9301114 - 财政年份:1993
- 资助金额:
$ 17万 - 项目类别:
Continuing Grant
相似国自然基金
随机多重分形的时维谱分布理论及Affine类时频处理技术
- 批准号:60702016
- 批准年份:2007
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Cyclotomic quotients for formal affine Hecke algebras and formal Demazure algebras of type A
A 型形式仿射 Hecke 代数和形式 Demazure 代数的分圆商
- 批准号:
545249-2019 - 财政年份:2019
- 资助金额:
$ 17万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Geometric Methods in the Representation Theory of Affine Hecke Algebras, Finite Reductive Groups, and Character Sheaves
仿射 Hecke 代数、有限还原群和特征轮表示论中的几何方法
- 批准号:
1855773 - 财政年份:2019
- 资助金额:
$ 17万 - 项目类别:
Standard Grant
The Unreasonable Effectiveness of the Affine Hecke Algebra
仿射赫克代数的不合理有效性
- 批准号:
1802378 - 财政年份:2018
- 资助金额:
$ 17万 - 项目类别:
Standard Grant
Combinatorics of Koornwinder polynomials and stable double affine Hecke algebras
Koornwinder 多项式和稳定双仿射 Hecke 代数的组合
- 批准号:
1600653 - 财政年份:2016
- 资助金额:
$ 17万 - 项目类别:
Continuing Grant
Geometric Methods in the Representation Theory of Affine Hecke Algebras, Finite Reductive Groups, and Character Sheaves
仿射 Hecke 代数、有限还原群和特征轮表示论中的几何方法
- 批准号:
1566618 - 财政年份:2016
- 资助金额:
$ 17万 - 项目类别:
Continuing Grant
Representations of Affine Hecke Algebras and Geometry of Shimura Varieties
仿射Hecke代数和志村簇几何的表示
- 批准号:
1463852 - 财政年份:2015
- 资助金额:
$ 17万 - 项目类别:
Continuing Grant
Unitary representations of affine Hecke algebras and reductive p-adic groups
仿射 Hecke 代数和还原 p-adic 群的酉表示
- 批准号:
1620329 - 财政年份:2015
- 资助金额:
$ 17万 - 项目类别:
Standard Grant
Unitary representations of affine Hecke algebras and reductive p-adic groups
仿射 Hecke 代数和还原 p-adic 群的酉表示
- 批准号:
1302122 - 财政年份:2013
- 资助金额:
$ 17万 - 项目类别:
Standard Grant