Collaborative Research: The Heisenberg--Weil Symmetries, their Geometrization and Applications
合作研究:海森堡-韦尔对称性、其几何化和应用
基本信息
- 批准号:1101660
- 负责人:
- 金额:$ 15.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-10-01 至 2015-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Harmonic Analysis is the theory of the Fourier transform operator acting on complex valued functions on various fields, such as, finite fields, p-adic fields, reals and the complex numbers. Interestingly, the Fourier transform is a part of a family of operators, that satisfy relations with respect to one another that can be described by a group symmetry structure, strongly related to the symplectic group. This family is called the Weil representation. The Weil representation serves as a bridge that connects classical harmonic analysis with representation theory, it also gives a powerful fresh perspective about the very nature of the theory. Furthermore, the Weil representation is governed by an object from algebraic geometry, called the geometric Weil representation. The geometric Weil representation, developed by the authors, serves as a bridge that connects between harmonic analysis and algebraic geometry, hence enables to solve analytic problems using modern cohomological techniques. The present project revolves around the following themes: canonical model of the Weil representation and its geometrization, the Weil representation in characteristic two, the Weil representation of symplectic similitudes, and applications to various fields.This project will enhance our understanding of the representation theoretic and algebraic geometric structures that underlie harmonic analysis and their applications. It will also reveal new perspectives about classical statements from number theory and analysis. The PI and Co-PI have presented their work in numerous classes and seminars over the past years. They are also collaborating with people from other scientific areas, such as engineering and physics, on the applications of their results to questions outside pure mathematics. They strongly believe that their methods and results are of interest to the broader scientific community and has the potential to have radical impact on disciplines outside of mathematics.
调和分析是傅立叶变换算子作用于不同域上的复值函数的理论,如有限域、p-ady域、实数和复数。有趣的是,傅里叶变换是算子族的一部分,它满足彼此之间的关系,可以用群对称结构来描述,与辛群密切相关。这个家族被称为韦尔代表。Weil表象是连接经典调和分析与表象理论的桥梁,它也为理解表象理论的本质提供了一个强有力的新视角。此外,Weil表示由代数几何中的一个对象管理,称为几何Weil表示。作者发展的几何Weil表示是连接调和分析和代数几何的桥梁,从而使我们能够利用现代上同调技术来解决解析问题。本课题围绕以下主题展开:Weil表示及其几何化的规范模型、特征二中的Weil表示、辛相似的Weil表示以及在各个领域中的应用。本项目将加深我们对作为调和分析及其应用基础的表示理论和代数几何结构的理解。它还将从数论和分析的角度揭示经典陈述的新视角。在过去的几年里,国际和平协会和联合国际组织在许多课堂和研讨会上介绍了他们的工作。他们还与其他科学领域的人合作,如工程学和物理学,将他们的结果应用于纯数学以外的问题。他们坚信,他们的方法和结果引起了更广泛的科学界的兴趣,并有可能对数学以外的学科产生根本性的影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shamgar Gurevich其他文献
A look at representations of $$SL_{2}({\mathbb {F}}_{q})$$ through the lens of size
- DOI:
10.1007/s40863-018-0098-8 - 发表时间:
2018-08-16 - 期刊:
- 影响因子:0.600
- 作者:
Shamgar Gurevich;Roger Howe - 通讯作者:
Roger Howe
Shamgar Gurevich的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shamgar Gurevich', 18)}}的其他基金
Collaborative Research: Rank and Duality in Representation Theory
合作研究:表示论中的等级和对偶性
- 批准号:
1804992 - 财政年份:2018
- 资助金额:
$ 15.1万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
- 批准号:
2348998 - 财政年份:2025
- 资助金额:
$ 15.1万 - 项目类别:
Standard Grant
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
- 批准号:
2348999 - 财政年份:2025
- 资助金额:
$ 15.1万 - 项目类别:
Standard Grant
Collaborative Research: Investigating Southern Ocean Sea Surface Temperatures and Freshening during the Late Pliocene and Pleistocene along the Antarctic Margin
合作研究:调查上新世晚期和更新世沿南极边缘的南大洋海面温度和新鲜度
- 批准号:
2313120 - 财政年份:2024
- 资助金额:
$ 15.1万 - 项目类别:
Standard Grant
NSF Engines Development Award: Utilizing space research, development and manufacturing to improve the human condition (OH)
NSF 发动机发展奖:利用太空研究、开发和制造来改善人类状况(OH)
- 批准号:
2314750 - 财政年份:2024
- 资助金额:
$ 15.1万 - 项目类别:
Cooperative Agreement
Doctoral Dissertation Research: How New Legal Doctrine Shapes Human-Environment Relations
博士论文研究:新法律学说如何塑造人类与环境的关系
- 批准号:
2315219 - 财政年份:2024
- 资助金额:
$ 15.1万 - 项目类别:
Standard Grant
Collaborative Research: Non-Linearity and Feedbacks in the Atmospheric Circulation Response to Increased Carbon Dioxide (CO2)
合作研究:大气环流对二氧化碳 (CO2) 增加的响应的非线性和反馈
- 批准号:
2335762 - 财政年份:2024
- 资助金额:
$ 15.1万 - 项目类别:
Standard Grant
Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation
协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就
- 批准号:
2335802 - 财政年份:2024
- 资助金额:
$ 15.1万 - 项目类别:
Standard Grant
Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation
协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就
- 批准号:
2335801 - 财政年份:2024
- 资助金额:
$ 15.1万 - 项目类别:
Standard Grant
Collaborative Research: Holocene biogeochemical evolution of Earth's largest lake system
合作研究:地球最大湖泊系统的全新世生物地球化学演化
- 批准号:
2336132 - 财政年份:2024
- 资助金额:
$ 15.1万 - 项目类别:
Standard Grant
CyberCorps Scholarship for Service: Building Research-minded Cyber Leaders
CyberCorps 服务奖学金:培养具有研究意识的网络领导者
- 批准号:
2336409 - 财政年份:2024
- 资助金额:
$ 15.1万 - 项目类别:
Continuing Grant