Developing a Theory of Dynamical Complex Multiplication
发展动态复数乘法理论
基本信息
- 批准号:1102858
- 负责人:
- 金额:$ 9.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-08-15 至 2015-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In her thesis, the PI pioneered the study of the dynamics of rational maps having a nontrivial automorphism, that is maps for which conjugating by some nontrivial linear fractional transformation preserves not just the dynamics of the map but the map itself (its coefficients when written as a rational function, say). Since most rational maps have no automorphisms, this might be considered a dynamical version of complex multiplication. The intellectual merit of the proposed project lies in the PI's plan to create a theory of dynamical complex multiplication, with the goal of developing enough machinery that a proof of a Conjecture of Morton and Silverman for this family of maps is within reach. Broader impacts of the work emerge from education and outreach activities, with a focus on gender equity issues and supporting women in research mathematics. Proposed activities include:(1) mentoring women in mathematics at the University of Hawaii and thus broadening participation of underrepresented groups;(2) establishing the Math Teachers' Circle of Hawaii; and (3) continuing the University of Hawaii Mathematics Department's Distinguished Lecture Series.
在她的论文中,PI率先研究了具有非平凡自同构的有理映射的动力学,即通过某种非平凡的线性分式变换进行共轭的映射不仅保持了映射的动力学,而且保持了映射本身(例如,其系数被写为有理函数时的系数)。由于大多数有理映射没有自同构,这可以被认为是复数乘法的动态版本。提议的项目的智力价值在于PI计划创建动态复数乘法理论,目标是开发足够的机器,以便证明Morton和Silverman关于这一映射族的猜想是触手可及的。这项工作的更广泛影响来自教育和外联活动,重点是性别平等问题和支持妇女进行数学研究。拟议的活动包括:(1)在夏威夷大学指导妇女数学,从而扩大代表不足群体的参与;(2)建立夏威夷数学教师圈;(3)继续夏威夷大学数学系的杰出讲座系列。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michelle Manes其他文献
Michelle Manes的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
- 批准号:12247163
- 批准年份:2022
- 资助金额:18.00 万元
- 项目类别:专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
- 批准号:12126512
- 批准年份:2021
- 资助金额:12.0 万元
- 项目类别:数学天元基金项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
- 批准号:61671064
- 批准年份:2016
- 资助金额:65.0 万元
- 项目类别:面上项目
相似海外基金
Dynamical Approaches to Number Theory and Additive Combinatorics
数论和加法组合学的动态方法
- 批准号:
EP/Y014030/1 - 财政年份:2024
- 资助金额:
$ 9.98万 - 项目类别:
Research Grant
Ergodic theory and multifractal analysis for non-uniformly hyperbolic dynamical systems with a non-compact state space
非紧状态空间非均匀双曲动力系统的遍历理论和多重分形分析
- 批准号:
24K06777 - 财政年份:2024
- 资助金额:
$ 9.98万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Hypoelliptic and Non-Markovian stochastic dynamical systems in machine learning and mathematical finance: from theory to application
机器学习和数学金融中的亚椭圆和非马尔可夫随机动力系统:从理论到应用
- 批准号:
2420029 - 财政年份:2024
- 资助金额:
$ 9.98万 - 项目类别:
Standard Grant
Development of a new EBSD analysis method combining dynamical scattering theory and machine learning
结合动态散射理论和机器学习开发新的 EBSD 分析方法
- 批准号:
23H01276 - 财政年份:2023
- 资助金额:
$ 9.98万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of a Causality Analysis Method for Point Processes Based on Nonlinear Dynamical Systems Theory and Elucidation of the Representation of Information Processing in the Brain
基于非线性动力系统理论的点过程因果分析方法的发展及大脑信息处理表征的阐明
- 批准号:
22KJ2815 - 财政年份:2023
- 资助金额:
$ 9.98万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Mathematical Structure Analysis of Origami Metamaterials Using Dynamical Systems Theory
利用动力系统理论进行折纸超材料的数学结构分析
- 批准号:
23KJ0682 - 财政年份:2023
- 资助金额:
$ 9.98万 - 项目类别:
Grant-in-Aid for JSPS Fellows
REU Site: Extremal Graph Theory and Dynamical Systems at RIT
REU 网站:RIT 的极值图论和动力系统
- 批准号:
2243938 - 财政年份:2023
- 资助金额:
$ 9.98万 - 项目类别:
Standard Grant
A Hyperheuristic Method Using The Nonlinear Dynamical Theory for Next-Generation Delivery Planning
使用非线性动力学理论的超启发式方法进行下一代交付计划
- 批准号:
23K04274 - 财政年份:2023
- 资助金额:
$ 9.98万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: Statistical mechanics of dense suspensions - dynamical correlations and scaling theory
合作研究:稠密悬浮液的统计力学 - 动力学相关性和标度理论
- 批准号:
2228680 - 财政年份:2023
- 资助金额:
$ 9.98万 - 项目类别:
Standard Grant
CAREER: Toward Real-Time, Constraint-Aware Control of Complex Dynamical Systems: from Theory and Algorithms to Software Tools
职业:实现复杂动力系统的实时、约束感知控制:从理论和算法到软件工具
- 批准号:
2238424 - 财政年份:2023
- 资助金额:
$ 9.98万 - 项目类别:
Standard Grant