Abelian Varieties and Curves
阿贝尔簇和曲线
基本信息
- 批准号:1103938
- 负责人:
- 金额:$ 16.52万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-08-15 至 2014-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Elham Izadi will work on questions resulting from the Hodge conjectures for abelian varieties and curves related to them. She will use correspondences to produce concrete families of curves in abelian varieties. For abelian varieties with actions of imaginary quadratic fields, she develops a concrete approach using families of curves, deformations and specializations, and Hodge bundles at the boundaries of linear systems. She will run a research group for students on elementary questions resulting from this project. In the past, using such research groups, she has been successful in bringing women to the University of Georgia.This research is in the field of algebraic geometry, whose main objects of study are algebraic varieties. These are classically defined as the sets of simultaneous zeros of polynomials. Abelian varieties and curves are special algebraic varieties with applications in many areas of mathematics including number theory and coding theory. Classically they appear in the work of Abel, Jacobi and Riemann among others, who developed the theory of modular forms. They make ideal testing grounds for important conjectures in algebraic geometry such as the Hodge conjectures. These are deep conjectures with far reaching consequences for the study of algebraic varieties. They were originally formulated in the form of questions by Hodge, then reformulated and corrected by others including some of the greatest mathematicians of this century such as Grothendieck.
Elham Izadi将致力于解决由关于阿贝尔变种和与之相关的曲线的Hodge猜想而产生的问题。她将使用对应关系来制作阿贝尔品种的具体曲线族。对于具有虚二次场作用的阿贝尔变种,她利用曲线族、变形和特殊化以及线性系统边界上的Hodge丛,发展了一种具体的方法。她将为学生们组织一个研究小组,研究这个项目产生的基本问题。过去,她利用这样的研究小组,成功地将女性带到了格鲁吉亚大学。这项研究是在代数几何领域,其主要研究对象是代数变种。它们被经典地定义为多项式的同时零点的集合。阿贝尔簇和曲线是一类特殊的代数簇,在数论、编码论等数学领域有着广泛的应用。经典地,它们出现在Abel、Jacobi和Riemann等人的工作中,他们发展了模形式理论。它们为代数几何中的重要猜想,如霍奇猜想,提供了理想的测试依据。这些都是深刻的猜想,对代数簇的研究具有深远的影响。它们最初是由霍奇以问题的形式提出的,然后被其他人重新表述和更正,其中包括本世纪一些最伟大的数学家,如格罗森迪克。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Elham Izadi其他文献
Comparison of the Effect of Natural Turpentine and Synthetic Sugar Free Gums on Dental Plaque pH Recovery
天然松节油与合成无糖口香糖对牙菌斑 pH 值恢复效果的比较
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
F. Mazhari;Elham Izadi;Farzaneh Barani Karbasaki - 通讯作者:
Farzaneh Barani Karbasaki
Synthesis and Characterization of Copper(II)–Cysteine/SiO2–Al2O3 as an Efficient and Reusable Heterogeneous Catalyst for the Oxidation of Aromatic Alcohols
铜(II)-半胱氨酸/SiO2-Al2O3作为一种高效且可重复使用的芳香醇氧化多相催化剂的合成和表征
- DOI:
10.1007/s10904-013-9956-0 - 发表时间:
2013 - 期刊:
- 影响因子:4
- 作者:
F. Zamani;Elham Izadi - 通讯作者:
Elham Izadi
Sonochemical synthesis and characterization of Cusub2/subHgIsub4/sub nanostructures photocatalyst with enhanced visible light photocatalytic ability
具有增强的可见光光催化能力的 Cusub2/subHgIsub4/sub 纳米结构光催化剂的声化学合成与表征
- DOI:
10.1016/j.arabjc.2021.103536 - 发表时间:
2022-01-01 - 期刊:
- 影响因子:5.200
- 作者:
Elham Abkar;Elham Izadi;Omid Amiri;Mojgan Ghanbari;Masoud Salavati-Niasari - 通讯作者:
Masoud Salavati-Niasari
Fabrication of Si-propyl-functionalized 4,4′-bipyridine-1,1ʹ-diium bisulfate tetrachloroferrate anchored to rice husk-derived nano-silica and its utility for the construction of N,N′-alkylidene bisamides
- DOI:
10.1007/s11164-024-05494-0 - 发表时间:
2025-01-02 - 期刊:
- 影响因子:3.500
- 作者:
Abdolkarim Zare;Elham Izadi - 通讯作者:
Elham Izadi
Sonochemical synthesis and characterization of Cu<sub>2</sub>HgI<sub>4</sub> nanostructures photocatalyst with enhanced visible light photocatalytic ability
- DOI:
10.1016/j.arabjc.2021.103536 - 发表时间:
2022-01-01 - 期刊:
- 影响因子:
- 作者:
Elham Abkar;Elham Izadi;Omid Amiri;Mojgan Ghanbari;Masoud Salavati-Niasari - 通讯作者:
Masoud Salavati-Niasari
Elham Izadi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Elham Izadi', 18)}}的其他基金
RTG: Research Training Group in Algebra, Algebraic Geometry, and Number Theory
RTG:代数、代数几何和数论研究培训小组
- 批准号:
1502651 - 财政年份:2015
- 资助金额:
$ 16.52万 - 项目类别:
Continuing Grant
Moduli Spaces of Abelian Varieties and Curves
阿贝尔簇和曲线的模空间
- 批准号:
0071795 - 财政年份:2000
- 资助金额:
$ 16.52万 - 项目类别:
Continuing Grant
Mathematical Sciences: Abelian Varieties of Low Dimension, Prym Varieties and Fano Threefolds
数学科学:低维阿贝尔簇、Prym 簇和法诺三重簇
- 批准号:
9204266 - 财政年份:1992
- 资助金额:
$ 16.52万 - 项目类别:
Standard Grant
相似国自然基金
正则半单Hessenberg varieties上的代数拓扑
- 批准号:11901218
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
The Frobenius action on curves and abelian varieties
曲线和阿贝尔簇上的弗罗贝尼乌斯作用
- 批准号:
2302511 - 财政年份:2023
- 资助金额:
$ 16.52万 - 项目类别:
Standard Grant
Arithmetic Statistics: Groups of Elliptic Curves and Abelian Varieties, and Zeroes of Families of Curves over Finite Fields.
算术统计:椭圆曲线群和阿贝尔簇,以及有限域上曲线族的零点。
- 批准号:
155635-2013 - 财政年份:2018
- 资助金额:
$ 16.52万 - 项目类别:
Discovery Grants Program - Individual
Stratifications of the moduli space of abelian varieties and that of curves
阿贝尔簇的模空间的分层和曲线的模空间的分层
- 批准号:
17K05196 - 财政年份:2017
- 资助金额:
$ 16.52万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Arithmetic Statistics: Groups of Elliptic Curves and Abelian Varieties, and Zeroes of Families of Curves over Finite Fields.
算术统计:椭圆曲线群和阿贝尔簇,以及有限域上曲线族的零点。
- 批准号:
155635-2013 - 财政年份:2017
- 资助金额:
$ 16.52万 - 项目类别:
Discovery Grants Program - Individual
Arithmetic geometry of the moduli spaces of algebraic curves and abelian varieties, and its applications
代数曲线和阿贝尔簇模空间的算术几何及其应用
- 批准号:
17K05179 - 财政年份:2017
- 资助金额:
$ 16.52万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Arithmetic Statistics: Groups of Elliptic Curves and Abelian Varieties, and Zeroes of Families of Curves over Finite Fields.
算术统计:椭圆曲线群和阿贝尔簇,以及有限域上曲线族的零点。
- 批准号:
155635-2013 - 财政年份:2015
- 资助金额:
$ 16.52万 - 项目类别:
Discovery Grants Program - Individual
Study of algebraic curves, K3 surfaces and Abelian varieties
代数曲线、K3曲面和阿贝尔簇的研究
- 批准号:
15K04815 - 财政年份:2015
- 资助金额:
$ 16.52万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Arithmetic Statistics: Groups of Elliptic Curves and Abelian Varieties, and Zeroes of Families of Curves over Finite Fields.
算术统计:椭圆曲线群和阿贝尔簇,以及有限域上曲线族的零点。
- 批准号:
155635-2013 - 财政年份:2014
- 资助金额:
$ 16.52万 - 项目类别:
Discovery Grants Program - Individual
Arithmetic Statistics: Groups of Elliptic Curves and Abelian Varieties, and Zeroes of Families of Curves over Finite Fields.
算术统计:椭圆曲线群和阿贝尔簇,以及有限域上曲线族的零点。
- 批准号:
155635-2013 - 财政年份:2013
- 资助金额:
$ 16.52万 - 项目类别:
Discovery Grants Program - Individual