International Conference on Singularity Theory and Applications
奇点理论与应用国际会议
基本信息
- 批准号:1104329
- 负责人:
- 金额:$ 2.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-06-15 至 2013-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Singularity theory is a meeting place of many disparate areas of mathematics, where different types of ideas, techniques and results merge together. The modern theory of singularities dates back to the 1960s, with the pioneering work of Thom, Hironaka, Brieskorn, Zariski, and many other renowed mathematicians. More recently, Singularity theory promoted vigorous interchanges among mathematical fields such as algebraic and geometric topology, algebraic geometry, number theory, and more applied fields such as the study of configurations in robot motion planning. An International Conference in Singularity Theory and Applications will be organized in Hefei, China, during July 25-31, 2011, and it will be hosted by the University of Science and Technology of China. The conference will be research-oriented, intended to disseminate recent developments, but it will also have a significant educational component, featuring introductory lectures so as to better strengthen connections among the assorted research groups represented and to provide access points for younger researchers and students.In the last century, considerable effort has been directed towards studying manifolds - spaces that locally look uniform, at each point and in each direction. This effort has been immensely successful; a substantial part of our insight has been gained through the study of various invariants (e.g., characteristic numbers and classes), the surgery program, etc. In recent decades, topologists have studied "singular" spaces with increasing interest, due to their numerous occurrences and applications within pure mathematics (algebraic geometry, number theory) and outside pure mathematics (mathematical physics, robot motion planning). In contrast to a manifold, a singular space may locally look different from point to point. The study of topological properties of singular spaces developed into the field of Singularity theory. The proposed conference will focus around recent developments in this fast advancing field of research.For more details about the conference, please see:http://www.math.wisc.edu/~maxim/conf/Hefei/Hefei.html
奇点理论是许多不同数学领域的交汇处,不同类型的思想、技术和结果融合在一起。现代奇点理论可以追溯到20世纪60年代,由Thom、Hironaka、Brieskorn、Zariski和许多其他著名数学家的开创性工作。近年来,奇点理论促进了数学领域(如代数和几何拓扑、代数几何、数论)和更多应用领域(如机器人运动规划中的构型研究)之间的蓬勃交流。由中国科学技术大学主办的国际奇点理论与应用会议将于2011年7月25日至31日在中国合肥召开。会议将以研究为导向,旨在传播最近的发展,但也将有重要的教育组成部分,包括介绍讲座,以便更好地加强代表的各种研究小组之间的联系,并为年轻的研究人员和学生提供接触点。在上个世纪,相当多的努力被用于研究流形——在每个点和每个方向上局部看起来均匀的空间。这一努力取得了巨大的成功;通过对各种不变量(例如,特征数和类)、手术程序等的研究,我们获得了相当一部分的见解。近几十年来,拓扑学家对“奇异”空间的研究越来越感兴趣,因为它们在纯数学(代数几何,数论)和纯数学(数学物理,机器人运动规划)之外的大量出现和应用。与流形相反,奇异空间可能在局部点与点之间看起来不同。奇异空间拓扑性质的研究发展到奇异理论领域。拟议的会议将集中讨论这一快速发展的研究领域的最新发展。欲了解更多会议详情,请访问:http://www.math.wisc.edu/~maxim/conf/Hefei/Hefei.html
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Laurentiu Maxim其他文献
Representations of the group represented by the dual Steenrod algebra
由对偶 Steenrod 代数表示的群的表示
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Sylvain Cappell;Laurentiu Maxim;Toru Ohmoto;Joerg Schuermann and Shoji Yokura;山口 睦;Yoshinobu Kamishima;Hiroyuki Nakaoka;宮嶋公夫;山口 睦;Y. Kamishima;山口 睦;Jorg Schurmann and Shoji Yokura;Y. Kamishima;山口 睦 - 通讯作者:
山口 睦
二重対数関数と結び目不変量
双对数函数和结不变量
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Sylvain Cappell;Laurentiu Maxim;Joerg Schuermann;Julius Shaneson and Shoji Yokura;小林 治;横田佳之 - 通讯作者:
横田佳之
On complex contact similarity manifoldfs
关于复杂的接触相似流形
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Sylvain Cappell;Laurentiu Maxim;Toru Ohmoto;Joerg Schuermann and Shoji Yokura;山口 睦;Yoshinobu Kamishima;Hiroyuki Nakaoka;宮嶋公夫;山口 睦;Y. Kamishima;山口 睦;Jorg Schurmann and Shoji Yokura;Y. Kamishima - 通讯作者:
Y. Kamishima
アファイン接続のリッチ曲率について
关于仿射连接的里奇曲率
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Sylvain Cappell;Laurentiu Maxim;Joerg Schuermann;Julius Shaneson and Shoji Yokura;小林 治 - 通讯作者:
小林 治
表現論の立場からSteeron代数上の非安定加群の理論を理解するための苦闘
努力从表示论的角度理解 Steelon 代数的不稳定模理论
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Sylvain Cappell;Laurentiu Maxim;Toru Ohmoto;Joerg Schuermann and Shoji Yokura;山口 睦;Yoshinobu Kamishima;Hiroyuki Nakaoka;宮嶋公夫;山口 睦;Y. Kamishima;山口 睦;Jorg Schurmann and Shoji Yokura;Y. Kamishima;山口 睦;Shoji Yokura;神島芳宣;山口 睦;Jorg Schurmann and Shoji Yokura;神島芳宣;山口 睦 - 通讯作者:
山口 睦
Laurentiu Maxim的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Laurentiu Maxim', 18)}}的其他基金
Conference: Algebraic and topological interplay of algebraic varieties
会议:代数簇的代数和拓扑相互作用
- 批准号:
2304894 - 财政年份:2023
- 资助金额:
$ 2.92万 - 项目类别:
Standard Grant
Non-Isolated Singularities and Derived Geometry
非孤立奇点和派生几何
- 批准号:
1904103 - 财政年份:2019
- 资助金额:
$ 2.92万 - 项目类别:
Standard Grant
Stratified spaces in geometric and computational topology and physics
几何和计算拓扑以及物理学中的分层空间
- 批准号:
1462433 - 财政年份:2015
- 资助金额:
$ 2.92万 - 项目类别:
Standard Grant
Singular Spaces in Geometry and Topology
几何和拓扑中的奇异空间
- 批准号:
1304999 - 财政年份:2013
- 资助金额:
$ 2.92万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: Conference: Strategies to Mitigate Implicit Bias and Promote an Ethos of Care in the Research Enterprise: A Convening
协作研究:会议:减轻隐性偏见并促进研究企业关怀精神的策略:召开会议
- 批准号:
2324401 - 财政年份:2024
- 资助金额:
$ 2.92万 - 项目类别:
Standard Grant
Conference: Transforming Trajectories for Women of Color in Tech: A Meeting Series to Develop a Systemic Action Plan
会议:改变有色人种女性在科技领域的轨迹:制定系统行动计划的会议系列
- 批准号:
2333305 - 财政年份:2024
- 资助金额:
$ 2.92万 - 项目类别:
Standard Grant
Conference: North American High Order Methods Con (NAHOMCon)
会议:北美高阶方法大会 (NAHOMCon)
- 批准号:
2333724 - 财政年份:2024
- 资助金额:
$ 2.92万 - 项目类别:
Standard Grant
Conference: Collaborative Workshop in Algebraic Geometry
会议:代数几何合作研讨会
- 批准号:
2333970 - 财政年份:2024
- 资助金额:
$ 2.92万 - 项目类别:
Standard Grant
Conference: Pittsburgh Links among Analysis and Number Theory (PLANT)
会议:匹兹堡分析与数论之间的联系 (PLANT)
- 批准号:
2334874 - 财政年份:2024
- 资助金额:
$ 2.92万 - 项目类别:
Standard Grant
Conference: Northeast Probability Seminar 2023-2025
会议:东北概率研讨会2023-2025
- 批准号:
2331449 - 财政年份:2024
- 资助金额:
$ 2.92万 - 项目类别:
Continuing Grant
Conference: Bridging Child Language Research to Practice for Language Revitalization
会议:将儿童语言研究与语言复兴实践联系起来
- 批准号:
2331639 - 财政年份:2024
- 资助金额:
$ 2.92万 - 项目类别:
Standard Grant
Conference: 57th Spring Topology and Dynamical Systems Conference
会议:第57届春季拓扑与动力系统会议
- 批准号:
2348830 - 财政年份:2024
- 资助金额:
$ 2.92万 - 项目类别:
Standard Grant
Conference: 9th Lake Michigan Workshop on Combinatorics and Graph Theory
会议:第九届密歇根湖组合学和图论研讨会
- 批准号:
2349004 - 财政年份:2024
- 资助金额:
$ 2.92万 - 项目类别:
Standard Grant