GOALI: Structure-Property Systematics in Novel Chalcogenide glasses with Modified Networks

GOALI:具有改进网络的新型硫属化物玻璃的结构-性能系统学

基本信息

  • 批准号:
    1104869
  • 负责人:
  • 金额:
    $ 68.64万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-09-01 至 2016-08-31
  • 项目状态:
    已结题

项目摘要

NON-TECHNICAL DESCRIPTION: Glassy materials such as sulfides, selenides and tellurides (i.e. chalcogenides) of Ge, As, Sb and P have found wide-ranging applications in the areas of photonics, telecommunication, memory storage, alternative energy resources and environmental remote sensing. The atomic structures of these materials are typically characterized by a network of covalently bonded atoms and structure-property relationships in these network chalcogenide glasses have been studied in detail. The physical and chemical characteristics of these networks can be substantially modified upon incorporation of elements such as Ba and Ga. Little, if any, is known about the unique properties of these new materials - they could result in transformative and wide-ranging technological applications. This research project brings together investigators with complementary expertise and common interests from UC Davis and Corning Incorporated (the world's foremost innovator and commercial developer of cutting-edge glass technology) to investigate the fundamental structure-property relationships in these novel chalcogenide materials. This project will finally enable the formulation of predictive models necessary for the optimization of these materials towards improved functionalities for potential commercialization. Students in this research project are learning to investigate problems in the realm of "basic science" that underlies industrial applications. The project is preparing students with powerful experimental skills and research experience in both academic and industrial settings that will open many opportunities for their careers. This project coordinates with the underrepresented minority-serving and other outreach programs at UC Davis to attract and recruit underrepresented graduate students and to increase the awareness of students in the science and technology of glassy materials. TECHNICAL DETAILS: This project entails studying the structure-property relationships and developing an atomic scale understanding of the structural mechanisms of transport and relaxation near the glass transition in novel modified and compensated network ternary and quaternary chalcogenide bulk glasses, fibers and supercooled liquids in the Ba-Ga-Ge-Se system. Accomplishing this goal involves application of a powerful combination of state-of-the-art techniques of physical property measurement and structural and dynamical characterization including nuclear magnetic resonance (NMR), Raman, optical absorption and fluorescence spectroscopy, high-energy X-ray diffraction and reverse Monte Carlo simulation. The results are being combined to develop predictive models, linking the atomic structure and dynamics with macroscopic physical properties that are crucial for compositional optimization of these materials for a wide range of technological applications. One example is exploring potential applications in photonics where these materials serve as efficient rare earth hosts with low phonon energy and high quantum efficiency. The interdisciplinary nature of this project impacts materials science and engineering, solid-state chemistry and physics and incorporates significant training of graduate students in state-of-the-art spectroscopic, diffraction and simulation techniques. The equipment and expertise at UC Davis, Corning Inc., National High Magnetic Field laboratory and Argonne National Laboratory provide students with a variety of modern research tools and a supportive structure for learning to use them. It continues to foster our longstanding collaborations with scientists in industry, academia and national laboratories and enriches the graduate education and training experience through numerous scientific dialogue and interactions between the collaborating scientists and participating students.FUNDING: This National Science Foundation project is co-funded by the Engineering Directorate and the Mathematical and Physical Sciences Directorate.
非技术描述:Ge、As、Sb和P的硫化物、硒化物和碲化物(即硫属化物)等玻璃材料在光子学、电信、存储器存储、替代能源和环境遥感等领域有着广泛的应用。这些材料的原子结构的典型特征是由共价键合的原子的网络和这些网络硫族化物玻璃中的结构-性能关系已被详细研究。 这些网络的物理和化学特性可以在掺入元素如Ba和Ga后得到显著改变。 人们对这些新材料的独特性能知之甚少--它们可能导致变革性和广泛的技术应用。 该研究项目汇集了来自加州大学戴维斯分校和康宁公司(世界上最重要的创新者和尖端玻璃技术的商业开发商)的具有互补专业知识和共同兴趣的研究人员,以研究这些新型硫属化物材料的基本结构-性能关系。 该项目最终将能够制定必要的预测模型,以优化这些材料,提高潜在商业化的功能。 这个研究项目的学生正在学习研究工业应用基础的“基础科学”领域的问题。 该项目正在为学生提供强大的实验技能和学术和工业环境中的研究经验,这将为他们的职业生涯提供许多机会。 该项目与加州大学戴维斯分校代表性不足的少数民族服务和其他推广计划相协调,以吸引和招募代表性不足的研究生,并提高学生对玻璃材料科学和技术的认识。 技术规格:该项目需要研究结构-性能关系,并在Ba-Ga-Ge-Se系统中对新型改性和补偿网络三元和四元硫族化物大块玻璃、纤维和过冷液体中玻璃化转变附近的传输和弛豫的结构机制进行原子尺度的理解。 实现这一目标涉及应用物理性质测量和结构及动力学表征的最新技术的强大组合,包括核磁共振(NMR)、拉曼、光吸收和荧光光谱、高能X射线衍射和反向蒙特卡罗模拟。这些结果正在被结合起来开发预测模型,将原子结构和动力学与宏观物理性质联系起来,这些物理性质对于这些材料的成分优化至关重要,适用于广泛的技术应用。一个例子是探索光子学中的潜在应用,其中这些材料作为具有低声子能量和高量子效率的有效稀土基质。 该项目的跨学科性质影响材料科学与工程,固态化学和物理,并结合了研究生在最先进的光谱,衍射和模拟技术的重要培训。 加州大学戴维斯分校的设备和专业知识,康宁公司,国家高磁场实验室和阿贡国家实验室为学生提供各种现代研究工具和学习使用它们的支持结构。它继续促进我们与工业界,学术界和国家实验室的科学家的长期合作,并通过合作科学家和参与学生之间的众多科学对话和互动丰富研究生教育和培训经验。资金:这个国家科学基金会项目由工程局和数学和物理科学局共同资助。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sabyasachi Sen其他文献

Observation of the transition state for pressure-induced BO3→ BO4 conversion in glass
玻璃中压力诱导 BO3→BO4 转化过渡态的观察
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    56.9
  • 作者:
    T. Edwards;Takatsugu Endo;Jeffrey H. Walton;Sabyasachi Sen
  • 通讯作者:
    Sabyasachi Sen
Spintronic action of Csubn/sub-Csub6/subHsub6/sub-Fe-Csub6/subHsub6/sub-Csub13-n/sub; emn/em = 6: How crucial are d electrons?
Cn-C6H6-Fe-C6H6-C13-n 的自旋电子学作用;n = 6:d 电子有多关键?
  • DOI:
    10.1016/j.molstruc.2022.134836
  • 发表时间:
    2023-04-05
  • 期刊:
  • 影响因子:
    4.700
  • 作者:
    Ajit Biswas;Shankar Prasad Mitra;Rinki Bhowmick;Dipankar Adak;Mausumi Chattopadhyaya;Sabyasachi Sen
  • 通讯作者:
    Sabyasachi Sen
229. Use of rAAV Transduced Endothelial Progenitor Cells for the Treatment of Myocardial Infarction in Rat Model
  • DOI:
    10.1016/j.ymthe.2006.08.255
  • 发表时间:
    2006-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Sabyasachi Sen;Juan Merchan;Jarrod Dean;Marcia Silver;Mary Gavin;Elizabeth Eaton;Tengiz Tkebuchava;Maasaki Ii;Young-Sup Yoon;Douglas W. Losordo;Ryuichi Aikawa
  • 通讯作者:
    Ryuichi Aikawa
Cardio-renal effect of dapagliflozin and dapagliflozin- saxagliptin combination on CD34 + ve hematopoietic stem cells (HSCs) and podocyte specific markers in type 2 diabetes (T2DM) subjects: a randomized trial
  • DOI:
    10.1186/s13287-025-04130-x
  • 发表时间:
    2025-01-26
  • 期刊:
  • 影响因子:
    7.300
  • 作者:
    Seshagiri Rao Nandula;Arad Jain;Sabyasachi Sen
  • 通讯作者:
    Sabyasachi Sen
Effect of demixing and coarsening on the energetics of poly(boro)silazane-derived amorphous Si–(B–)C–N ceramics
分层和粗化对聚(硼)硅氮烷衍生的无定形 Siâ(Bâ)CâN 陶瓷能量学的影响
  • DOI:
    10.1016/j.scriptamat.2013.04.022
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    6
  • 作者:
    Yan Gao;Scarlett Widgeon;Tien B. Tran;Amir H. Tavakoli;Gabriela Mera;Sabyasachi Sen;Ralf Riedel;Alexandra Navrotsky
  • 通讯作者:
    Alexandra Navrotsky

Sabyasachi Sen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sabyasachi Sen', 18)}}的其他基金

GOALI: Structural and Topological Controls on Viscoelasticity and Relaxation Processes in Chalcogenide Glass-Forming Liquids
目标:硫族化物玻璃形成液体中粘弹性和弛豫过程的结构和拓扑控制
  • 批准号:
    1855176
  • 财政年份:
    2019
  • 资助金额:
    $ 68.64万
  • 项目类别:
    Continuing Grant
GOALI: Atomistic Understanding of Non-Newtonian Flow and Related Phenomena in Chalcogenide Glass-Forming Liquids
GOALI:硫属化物玻璃形成液体中非牛顿流动和相关现象的原子理解
  • 批准号:
    1505185
  • 财政年份:
    2015
  • 资助金额:
    $ 68.64万
  • 项目类别:
    Continuing Grant
Atomic-Scale Understanding of Phase-Change Phenomena in Amorphous Chalcogenides
无定形硫族化物相变现象的原子尺度理解
  • 批准号:
    0906070
  • 财政年份:
    2009
  • 资助金额:
    $ 68.64万
  • 项目类别:
    Continuing Grant
Intermediate-Range Structure and Dynamics in Complex Ge-As-Chalcogenide Glasses and Liquids
复杂 Ge-As-硫属化物玻璃和液体的中程结构和动力学
  • 批准号:
    0603933
  • 财政年份:
    2006
  • 资助金额:
    $ 68.64万
  • 项目类别:
    Continuing Grant

相似海外基金

CAREER: Understanding Processing-Structure-Property Relationships in Co-Axial Wire-Feed, Powder-Feed Laser Directed Energy Deposition
职业:了解同轴送丝、送粉激光定向能量沉积中的加工-结构-性能关系
  • 批准号:
    2338951
  • 财政年份:
    2024
  • 资助金额:
    $ 68.64万
  • 项目类别:
    Standard Grant
CAREER: Elucidating the Impact of Side-Chain Topology on the Structure-Property Relationship in Bottlebrush Polymers
职业:阐明侧链拓扑对洗瓶刷聚合物结构-性能关系的影响
  • 批准号:
    2340664
  • 财政年份:
    2024
  • 资助金额:
    $ 68.64万
  • 项目类别:
    Continuing Grant
Ultra-fast structure-property characterisation of materials
材料的超快速结构-性能表征
  • 批准号:
    LE240100036
  • 财政年份:
    2024
  • 资助金额:
    $ 68.64万
  • 项目类别:
    Linkage Infrastructure, Equipment and Facilities
RII Track-4:@NASA: Process-Structure-Property Relationship of the Hybrid Manufactured Multifunctional Mechano-Luminescence-Optoelectronic Fibers
RII Track-4:@NASA:混合制造的多功能机械-发光-光电纤维的工艺-结构-性能关系
  • 批准号:
    2327493
  • 财政年份:
    2024
  • 资助金额:
    $ 68.64万
  • 项目类别:
    Standard Grant
CAESAR: Characterizing and Understanding Atmospheric Boundary Layer Fluxes, Structure and Cloud Property Evolution in Arctic Cold Air Outbreaks
CAESAR:描述和理解北极冷空气爆发时的大气边界层通量、结构和云特性演化
  • 批准号:
    2151075
  • 财政年份:
    2023
  • 资助金额:
    $ 68.64万
  • 项目类别:
    Continuing Grant
Structure-Optoelectronic Property Relationships in Homogeneous and Heterogeneous/Gradient Alloyed Colloidal I-(II)-III-VI Quantum Dots
均质和异质/梯度合金胶体 I-(II)-III-VI 量子点的结构-光电性质关系
  • 批准号:
    2304949
  • 财政年份:
    2023
  • 资助金额:
    $ 68.64万
  • 项目类别:
    Standard Grant
Development of new INVAR functional materials by clarification of local structure-physical property correlation
通过阐明局部结构-物理性能相关性开发新型INVAR功能材料
  • 批准号:
    23KK0088
  • 财政年份:
    2023
  • 资助金额:
    $ 68.64万
  • 项目类别:
    Fund for the Promotion of Joint International Research (International Collaborative Research)
FMSG: Cyber: Using a cloud-based platform to quantify the uncertainty of the process-structure-property-surface relationship for repeatable additive manufacturing of Inconel 718
FMSG:Cyber​​:使用基于云的平台量化 Inconel 718 可重复增材制造的工艺-结构-性能-表面关系的不确定性
  • 批准号:
    2328112
  • 财政年份:
    2023
  • 资助金额:
    $ 68.64万
  • 项目类别:
    Standard Grant
Flow property and flow-induced structure of micellar solutions in a continuously arranged cavity flow
连续排列空腔流中胶束溶液的流动特性和流动诱导结构
  • 批准号:
    23K03654
  • 财政年份:
    2023
  • 资助金额:
    $ 68.64万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CAREER: CAS-Climate: Structure-Property-Performance Relationships of Iron- and Copper-Based Hybrid Mie-Resonator Photocatalysts for C-C and C-N Coupling Reactions
职业:CAS-气候:用于 C-C 和 C-N 偶联反应的铁基和铜基混合米氏谐振器光催化剂的结构-性能-性能关系
  • 批准号:
    2237454
  • 财政年份:
    2023
  • 资助金额:
    $ 68.64万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了