FMSG: Cyber: Using a cloud-based platform to quantify the uncertainty of the process-structure-property-surface relationship for repeatable additive manufacturing of Inconel 718
FMSG:Cyber:使用基于云的平台量化 Inconel 718 可重复增材制造的工艺-结构-性能-表面关系的不确定性
基本信息
- 批准号:2328112
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-10-15 至 2025-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This Future Manufacturing Seed Grant (FMSG) project supports research into the theoretical and experimental foundation required to use metal additive manufacturing (AM) as a production process for functional end-use parts. Metal AM is a driver for innovation and competitiveness of United States manufacturing because it allows rapid implementation of new part designs to reduce the time-to-market of new products. However, using metal AM as a production process instead of a prototyping tool requires reliably and repeatably manufacturing parts with near-identical structure, surface topography, and properties. Consequently, understanding the uncertainty associated with the process-structure-property-surface (PSPS) relationship is important. Yet, PSPS research is time-consuming and costly because many specimens are required to derive meaningful information and, alternatively, aggregating existing datasets of different studies to expand and enhance insights about the PSPS relationship is not straightforward because of access/permissions and inconsistencies between data formats. Hence, this research specifically aims to address these fundamental problems by leveraging an uncertainty quantification (UQ) framework and machine learning (ML) algorithms to analyze microstructure and surface topography images, and quantify the PSPS relationship. Additionally, a cloud-based database will make the data and knowledge available to other researchers. Research integrates with education and workforce development, specifically underrepresented groups, through a partnership with Virginia Tech (VT), Virginia State University (VSU), a 4-year Historically Black College/University (HBCU), and the Commonwealth Center for Advanced Manufacturing (CCAM), a public-private partnership in Virginia.The research objective of this project is twofold: quantify the uncertainty of the PSPS relationship for laser powder bed fusion (L-PBF) of Inconel 718 and, establish a cloud-based database to aggregate and share PSPS data among different researchers, to reduce duplication of effort and accelerate PSPS research by data-sharing. To accomplish this objective, the research aims to combine a UQ framework with ML algorithms to derive data-driven models that relate L-PBF process parameters to metrics that quantify the microstructure and as-built surface topography. The knowledge resulting from this research will (1) quantify the uncertainty of the microstructure and as-built surface topography as a function of the L-PBF process parameters (forward UQ problem); (2) determine the L-PBF process parameters required to obtain specific uncertainty (or probability definition) of microstructure and as-built surface topography (inverse UQ problem); (3) derive an operating map of the solution of the forward and inverse problems and its uncertainty as a function of the L-PBF process parameters; (4) implement a cloud-based database to aggregate microstructure images and surface topography maps that can be cited using a digital object identifier, and enable combining user-generated datasets. The outcomes of this project will reduce technical barriers and spur adoption of metal AM as a viable manufacturing process for functional end-use parts.This Future Manufacturing research is supported by the Computer and Information Science and Engineering Directorate's Division of Computer and Network Systems (CISE/CNS) and the Social, Behavioral and Economic Sciences Directorate’s Division of Social and Economic Sciences (SBE/SES).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该未来制造种子基金(FMSG)项目支持研究使用金属增材制造(AM)作为功能性最终用途零件的生产工艺所需的理论和实验基础。Metal AM是美国制造业创新和竞争力的驱动力,因为它允许快速实施新零件设计,以缩短新产品的上市时间。然而,使用金属AM作为生产工艺而不是原型工具需要可靠且可重复地制造具有几乎相同的结构、表面形貌和特性的部件。因此,理解与过程-结构-性质-表面(PSPS)关系相关的不确定性是重要的。然而,PSPS研究是耗时和昂贵的,因为需要许多标本来获得有意义的信息,或者,聚合不同研究的现有数据集,以扩大和增强对PSPS关系的见解是不简单的,因为访问/许可和数据格式之间的不一致。因此,本研究旨在通过利用不确定性量化(UQ)框架和机器学习(ML)算法来分析微观结构和表面形貌图像,并量化PSPS关系来解决这些基本问题。此外,基于云的数据库将使其他研究人员可以使用数据和知识。通过与弗吉尼亚理工大学(VT)、弗吉尼亚州立大学(VSU)、一所4年制的历史黑人学院/大学(HBCU)和弗吉尼亚州的一个公私合作伙伴关系联邦先进制造中心(CCAM)的合作,研究与教育和劳动力发展相结合,特别是与代表性不足的群体相结合。量化Inconel 718激光粉末床熔合(L-PBF)PSPS关系的不确定性,并建立一个基于云的数据库,在不同的研究人员之间聚合和共享PSPS数据,以减少重复劳动,并通过数据共享加速PSPS研究。为了实现这一目标,该研究的目的是联合收割机的UQ框架与ML算法,以获得数据驱动的模型,相关的L-PBF工艺参数的度量,量化的微观结构和建成的表面形貌。从这项研究中得到的知识将(1)量化的微观结构和建成的表面形貌的L-PBF工艺参数的函数的不确定性(正向UQ问题);(2)确定L-PBF工艺参数所需的具体不确定度微观结构和竣工表面形貌(或概率定义)(3)导出正问题和逆问题的解的操作映射及其作为L-PBF过程参数的函数的不确定性;(4)实现基于云的数据库,以聚集可以使用数字对象标识符引用的微观结构图像和表面形貌图,并且使得能够组合用户生成的数据集。该项目的成果将减少技术障碍,并促进采用金属增材制造作为功能性最终用途零件的可行制造工艺。(CISE/CNS)和社会,行为和经济科学局社会和经济科学司(SBE/SES)该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bart Raeymaekers其他文献
The effect of polyethylene creep on tibial insert locking screw loosening and back-out in prosthetic knee joints
- DOI:
10.1016/j.jmbbm.2014.06.002 - 发表时间:
2014-10-01 - 期刊:
- 影响因子:
- 作者:
Anthony P. Sanders;Bart Raeymaekers - 通讯作者:
Bart Raeymaekers
Guest editorial: Special Issue on Artificial Intelligence and Emerging Computational Approaches for Tribology
- DOI:
10.1007/s40544-024-0883-6 - 发表时间:
2024-04-02 - 期刊:
- 影响因子:8.200
- 作者:
Zhinan Zhang;Shuaihang Pan;Bart Raeymaekers - 通讯作者:
Bart Raeymaekers
3D ultrasound directed self-assembly of high aspect ratio particles: On the relationship between the number of transducers and their spatial arrangement
高纵横比粒子的3D超声定向自组装:换能器数量与其空间排列之间的关系
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:4
- 作者:
M. Prisbrey;F. G. Vasquez;Bart Raeymaekers - 通讯作者:
Bart Raeymaekers
Measuring and Simulating the Transient Packing Density During Ultrasound Directed Self‐Assembly and Vat Polymerization Manufacturing of Engineered Materials
测量和模拟工程材料的超声波引导自组装和还原聚合制造过程中的瞬态堆积密度
- DOI:
10.1002/admt.202301950 - 发表时间:
2024 - 期刊:
- 影响因子:6.8
- 作者:
S. Noparast;F. Guevara Vasquez;Mathieu Francoeur;Bart Raeymaekers - 通讯作者:
Bart Raeymaekers
Design of a dual stage actuator tape head with high-bandwidth track following capability
- DOI:
10.1007/s00542-009-0800-y - 发表时间:
2009-02-19 - 期刊:
- 影响因子:1.800
- 作者:
Bart Raeymaekers;Matthew R. Graham;Raymond A. de Callafon;Frank E. Talke - 通讯作者:
Frank E. Talke
Bart Raeymaekers的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bart Raeymaekers', 18)}}的其他基金
Ultrasound directed self-assembly of non-periodic patterns of particles
超声引导非周期粒子自组装
- 批准号:
2246277 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
EAGER: Manufacturing Nanocomposite Materials Using Ultrasound Directed Self-Assembly and Additive Fused Deposition Modeling
EAGER:使用超声波引导自组装和增材熔融沉积建模制造纳米复合材料
- 批准号:
2017588 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Ultrasound Alignment of Carbon Nanotubes in a Polymer Medium for Additive Manufacturing of Nanocomposite Materials
用于纳米复合材料增材制造的聚合物介质中碳纳米管的超声排列
- 批准号:
1636208 - 财政年份:2016
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
BRIGE: Patterned Microtexture to Create Fluid Film Lubrication at Low Sliding Velocities in Prosthetic Knee Joints
BRIGE:图案化微纹理可在假肢膝关节中以低滑动速度产生液膜润滑
- 批准号:
1227869 - 财政年份:2012
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似国自然基金
Cyber体系脆弱性仿真分析方法研究
- 批准号:61403400
- 批准年份:2014
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
基于复杂网络理论的Cyber体系效能仿真分析方法研究
- 批准号:61374179
- 批准年份:2013
- 资助金额:77.0 万元
- 项目类别:面上项目
面向智能电网基础设施Cyber-Physical安全的自治愈基础理论研究
- 批准号:61300132
- 批准年份:2013
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
Cyber攻击对国家关键基础设施级联失效影响建模仿真研究
- 批准号:61174035
- 批准年份:2011
- 资助金额:58.0 万元
- 项目类别:面上项目
基于Cyber空间的体系脆弱性仿真分析方法研究
- 批准号:61174156
- 批准年份:2011
- 资助金额:59.0 万元
- 项目类别:面上项目
相似海外基金
An innovative cyber compliance platform using AI, live monitoring data and machine learning to automate compliance and due diligence completion.
一个创新的网络合规平台,使用人工智能、实时监控数据和机器学习来自动完成合规和尽职调查。
- 批准号:
10100493 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Collaborative R&D
PFI–TT: Development of an Explainable and Robust Detector of Forged Multimedia and Cyber Threats using Artificial intelligence
PFI™TT:使用人工智能开发可解释且强大的伪造多媒体和网络威胁检测器
- 批准号:
2329858 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
PFI–TT: Development of an Explainable and Robust Detector of Forged Multimedia and Cyber Threats using Artificial intelligence
PFI™TT:使用人工智能开发可解释且强大的伪造多媒体和网络威胁检测器
- 批准号:
2409577 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CyberHeels – AI powered cyber security education platform and bootcamps for women’s safety. 'Step into security: empower your walk with CyberHeels' - using wearable tech (road map) and cyber security education to improve safety for women.
CyberHeels — 人工智能驱动的网络安全教育平台和女性安全训练营。
- 批准号:
10078031 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Collaborative R&D
FMRG: Cyber: Scalable Precision Manufacturing of Programmable Polymer Nanoparticles Using Low-temperature Initiated Chemical Vapor Deposition Guided by Artificial Intelligence
FMRG:网络:利用人工智能引导的低温引发化学气相沉积进行可编程聚合物纳米粒子的可扩展精密制造
- 批准号:
2229092 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
QuantoSniff: A Next Generation Cyber Defence using Quantum-Safe Cryptography
QuantoSniff:使用量子安全加密技术的下一代网络防御
- 批准号:
10076739 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Collaborative R&D
Alleviating Human Pain and Anxiety by Using a Cyber-Physical Agent System
使用网络物理代理系统减轻人类的痛苦和焦虑
- 批准号:
22K19784 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
CPS: Small: High-Impact Decision Making Using Cyber-Physical Systems: A Distortion-Based Framework
CPS:小型:使用网络物理系统进行高影响力的决策:基于失真的框架
- 批准号:
2150832 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Attribution of Cyber Incidents in International Diplomacy using Zero Knowledge Proofs
使用零知识证明对国际外交中的网络事件进行归因
- 批准号:
2726583 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Studentship
Constructing a holistic view of cyber incident response using Systems Thinking and re-imaging its future using creative methodologies
使用系统思维构建网络事件响应的整体视图,并使用创造性方法重新构想其未来
- 批准号:
2602746 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Studentship