Algebraic Topology and Algebraic K-Theory
代数拓扑和代数 K 理论
基本信息
- 批准号:1105255
- 负责人:
- 金额:$ 29.76万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-06-01 至 2015-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The goal of this project is to explore some applications and potential applications of algebraic topology and algebraic K-theory. In algebraic K-theory, the project explores ideas applicable to the conjecture of Waldhausen on the K-theory chromatic tower, relating arithmetic and geometry. The project explores a number of potential contributions to the theory and computation of topological Hochschild homology and topological cyclic homology. The project explores some new stable homotopy tools applicable to the study of the algebraic K-theory of spaces (which is closely related to the differential topology of high dimensional manifolds). In unstable homotopy theory, the project explores the applications of homotopy algebras to computations related to fiber squares and mapping spaces.Homotopy theory studies those properties of mathematical objects that do not change under small deformations. These mathematical objects are often of a geometric nature but the methods of homotopy theory have been increasingly applied to objects of an algebraic nature as well. Homotopy theoretic properties tend to be accessible to computation by taking advantage of the invariance under small changes. Since they also generally retain important information about the original mathematical objects, homotopy theory is an effective tool for a wide range of mathematical problems.
本课题的目的是探索代数拓扑和代数k理论的一些应用和潜在应用。在代数k理论中,本项目探讨了适用于Waldhausen关于k理论色塔猜想的思想,涉及算术和几何。该项目探索了拓扑Hochschild同调和拓扑循环同调的理论和计算方面的一些潜在贡献。本项目探索了一些新的稳定同伦工具,这些工具适用于研究空间的代数k理论(与高维流形的微分拓扑密切相关)。在不稳定同伦理论中,本项目探讨了同伦代数在光纤平方和映射空间计算中的应用。同伦理论研究数学对象在小变形下不改变的性质。这些数学对象通常是几何性质的,但同伦理论的方法也越来越多地应用于代数性质的对象。利用小变化下的不变性,同伦理论性质易于计算。由于它们通常也保留了原始数学对象的重要信息,因此同伦理论是解决各种数学问题的有效工具。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Mandell其他文献
Michael Mandell的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Mandell', 18)}}的其他基金
Collaborative Research: Algebraic K-Theory, Arithmetic, and Equivariant Stable Homotopy Theory
合作研究:代数K理论、算术和等变稳定同伦理论
- 批准号:
2104348 - 财政年份:2021
- 资助金额:
$ 29.76万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Trace Methods and Applications for Cut-and-Paste K-Theory
FRG:协作研究:剪切粘贴 K 理论的追踪方法和应用
- 批准号:
2052846 - 财政年份:2021
- 资助金额:
$ 29.76万 - 项目类别:
Standard Grant
Collaborative Research: Algebraic K-Theory, Topological Periodic Cyclic Homology, and Noncommutative Algebraic Geometry
合作研究:代数K理论、拓扑周期循环同调和非交换代数几何
- 批准号:
1811820 - 财政年份:2018
- 资助金额:
$ 29.76万 - 项目类别:
Continuing Grant
2016 Graduate Student Topology and Geometry Conference
2016年研究生拓扑与几何会议
- 批准号:
1613059 - 财政年份:2016
- 资助金额:
$ 29.76万 - 项目类别:
Standard Grant
Algebraic Topology and Algebraic K-theory
代数拓扑和代数 K 理论
- 批准号:
1505579 - 财政年份:2015
- 资助金额:
$ 29.76万 - 项目类别:
Standard Grant
Graduate Student Topology and Geometry Conference
研究生拓扑与几何会议
- 批准号:
1206142 - 财政年份:2012
- 资助金额:
$ 29.76万 - 项目类别:
Standard Grant
Homotopy Algebras and Homotopy Theory
同伦代数和同伦理论
- 批准号:
0804272 - 财政年份:2008
- 资助金额:
$ 29.76万 - 项目类别:
Standard Grant
Homotopy Algebras and Homotopy Theory
同伦代数和同伦理论
- 批准号:
0504069 - 财政年份:2005
- 资助金额:
$ 29.76万 - 项目类别:
Continuing Grant
相似海外基金
Applications of algebraic topology to quantum field theory
代数拓扑在量子场论中的应用
- 批准号:
2882485 - 财政年份:2023
- 资助金额:
$ 29.76万 - 项目类别:
Studentship
The Topology and Hodge Theory of Algebraic Maps
代数图的拓扑和霍奇理论
- 批准号:
2200492 - 财政年份:2022
- 资助金额:
$ 29.76万 - 项目类别:
Continuing Grant
Connections between Algebra and Topology: Using algebraic number theory and TQFTs to study knots
代数与拓扑之间的联系:使用代数数论和 TQFT 研究纽结
- 批准号:
559329-2021 - 财政年份:2022
- 资助金额:
$ 29.76万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Conferences on Boolean Algebras, Lattices, Algebraic Logic and Quantum Logic, Universal Algebra, Set Theory, and Set-Theoretic and Point-free Topology
布尔代数、格、代数逻辑和量子逻辑、泛代数、集合论、集合论和无点拓扑会议
- 批准号:
2223126 - 财政年份:2022
- 资助金额:
$ 29.76万 - 项目类别:
Continuing Grant
Collaborative Research: Integrating Algebraic Topology, Graph Theory, and Multiscale Analysis for Learning Complex and Diverse Datasets
协作研究:集成代数拓扑、图论和多尺度分析来学习复杂多样的数据集
- 批准号:
2053284 - 财政年份:2021
- 资助金额:
$ 29.76万 - 项目类别:
Continuing Grant
Connections between Algebra and Topology: Using algebraic number theory and TQFTs to study knots
代数与拓扑之间的联系:使用代数数论和 TQFT 研究纽结
- 批准号:
559329-2021 - 财政年份:2021
- 资助金额:
$ 29.76万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Collaborative Research: Integrating Algebraic Topology, Graph Theory, and Multiscale Analysis for Learning Complex and Diverse Datasets
协作研究:集成代数拓扑、图论和多尺度分析来学习复杂多样的数据集
- 批准号:
2052983 - 财政年份:2021
- 资助金额:
$ 29.76万 - 项目类别:
Continuing Grant
The Topology and Hodge Theory of Algebraic Maps
代数图的拓扑和霍奇理论
- 批准号:
1901975 - 财政年份:2019
- 资助金额:
$ 29.76万 - 项目类别:
Continuing Grant
The Topology and Hodge Theory of Algebraic Maps
代数图的拓扑和霍奇理论
- 批准号:
1600515 - 财政年份:2016
- 资助金额:
$ 29.76万 - 项目类别:
Continuing Grant
Bringing set theory and algebraic topology together
将集合论和代数拓扑结合在一起
- 批准号:
EP/K035703/2 - 财政年份:2016
- 资助金额:
$ 29.76万 - 项目类别:
Fellowship














{{item.name}}会员




