Collaborative Research: Integrating Algebraic Topology, Graph Theory, and Multiscale Analysis for Learning Complex and Diverse Datasets
协作研究:集成代数拓扑、图论和多尺度分析来学习复杂多样的数据集
基本信息
- 批准号:2052983
- 负责人:
- 金额:$ 35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Despite the tremendous accomplishments of machine learning and deep learning in the past decade, challenges remain for structurally complex and diverse data. For example, a single data point in a database used for drug design might have tens of thousands of internal degrees of freedom, and such a database may have tens of thousands of such data points. This feature of structural complexity is a major challenge to deep learning methods. Moreover, diverse data typically originate from sparse sampling of a huge space, and this sparsity is due, in particular, to the cost and time constraints in experimental data acquisition. This project will address the challenges of complex and diverse datasets with ideas that blend and integrate mathematical techniques from several subfields including algebraic topology, spectral graph theory and multiscale analysis. The methods developed will apply to data representation, advanced machine learning methods, and deep learning algorithms, and will be implemented into software packages available to the community. This project will train graduate and undergraduate students and engage underrepresented groups in data science research. This project will develop novel topology and graph theory-based approaches to revolutionize the current practice in data analysis and to deal with the challenge of structurally complex data and diverse data. First, the investigators will develop persistent combinatorial graph theory as a unified paradigm for simultaneous topological data analysis and spectral data analysis. In particular, they will develop systematic, scalable, accurate persistent combinatorial graph representations to extract rich topological and spectral information. Secondly, the investigators will develop multiscale graph models to create a family of nested submanifolds to handle the diverse data originated from sparsely sampled data points in a huge space. These methods will be integrated with advanced machine learning and deep learning algorithms for complex and diverse datasets. Thirdly, the proposed methods will be applied to a wide range of case studies in data science. User-friendly software packages and online servers will be developed using parallel and GPU architectures for researchers who are not formally trained in mathematics or machine learning.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
尽管机器学习和深度学习在过去十年中取得了巨大的成就,但结构复杂和多样化的数据仍然面临挑战。例如,用于药物设计的数据库中的单个数据点可能具有数万个内部自由度,并且这样的数据库可能具有数万个这样的数据点。这种结构复杂性的特征是深度学习方法的一个主要挑战。 此外,不同的数据通常来源于巨大空间的稀疏采样,这种稀疏性特别是由于实验数据采集的成本和时间限制。 该项目将解决复杂多样的数据集的挑战,融合和整合来自代数拓扑,谱图理论和多尺度分析等几个子领域的数学技术。开发的方法将适用于数据表示,先进的机器学习方法和深度学习算法,并将实施到社区可用的软件包中。该项目将培训研究生和本科生,并让代表性不足的群体参与数据科学研究。该项目将开发基于拓扑和图论的新方法,以彻底改变目前的数据分析实践,并应对结构复杂的数据和多样化数据的挑战。首先,研究人员将开发持久的组合图论作为同时进行拓扑数据分析和光谱数据分析的统一范式。 特别是,他们将开发系统的,可扩展的,准确的持久组合图形表示,以提取丰富的拓扑和光谱信息。其次,研究人员将开发多尺度图模型来创建一个嵌套子流形族,以处理来自巨大空间中稀疏采样数据点的各种数据。这些方法将与先进的机器学习和深度学习算法集成,用于复杂和多样化的数据集。 第三,所提出的方法将应用于数据科学中的广泛案例研究。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(40)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
AweGNN: Auto-parametrized weighted element-specific graph neural networks
AweGNN:自动参数化加权特定元素图神经网络
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:7.7
- 作者:Timothy Szocinski;Duc D Nguyen;Guo-Wei Wei
- 通讯作者:Guo-Wei Wei
Algebraic Graph-assisted Bidirectional Transformers for Molecular Prediction
- DOI:10.21203/rs.3.rs-152856/v1
- 发表时间:2021-01
- 期刊:
- 影响因子:0
- 作者:Dong Chen;Kaifu Gao;D. Nguyen;Xin Chen;Yi Jiang;G. Wei;F. Pan
- 通讯作者:Dong Chen;Kaifu Gao;D. Nguyen;Xin Chen;Yi Jiang;G. Wei;F. Pan
Emerging Dominant SARS-CoV-2 Variants
- DOI:10.1021/acs.jcim.2c01352
- 发表时间:2023-01-09
- 期刊:
- 影响因子:5.6
- 作者:Chen, Jiahui;Wang, Rui;Wei, Guo-Wei
- 通讯作者:Wei, Guo-Wei
Biomolecular Topology: modelling and data analysis
生物分子拓扑:建模和数据分析
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Jian Liu;Kelin Xia;Jie Wu;Stephen Yau;Guo-Wei Wei
- 通讯作者:Guo-Wei Wei
Omicron Variant (B.1.1.529): Infectivity, Vaccine Breakthrough, and Antibody Resistance
- DOI:10.1021/acs.jcim.1c01451
- 发表时间:2022-01-06
- 期刊:
- 影响因子:5.6
- 作者:Chen, Jiahui;Wang, Rui;Wei, Guo-Wei
- 通讯作者:Wei, Guo-Wei
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ekaterina Rapinchuk其他文献
Ekaterina Rapinchuk的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: BoCP-Implementation: Alpine plants as a model system for biodiversity dynamics in a warming world: Integrating genetic, functional, and community approaches
合作研究:BoCP-实施:高山植物作为变暖世界中生物多样性动态的模型系统:整合遗传、功能和社区方法
- 批准号:
2326020 - 财政年份:2024
- 资助金额:
$ 35万 - 项目类别:
Continuing Grant
Collaborative Research: BoCP-Implementation: Alpine plants as a model system for biodiversity dynamics in a warming world: Integrating genetic, functional, and community approaches
合作研究:BoCP-实施:高山植物作为变暖世界中生物多样性动态的模型系统:整合遗传、功能和社区方法
- 批准号:
2326021 - 财政年份:2024
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Collaborative Research: BoCP-Implementation: Integrating Traits, Phylogenies and Distributional Data to Forecast Risks and Resilience of North American Plants
合作研究:BoCP-实施:整合性状、系统发育和分布数据来预测北美植物的风险和恢复力
- 批准号:
2325835 - 财政年份:2024
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Collaborative Research: BoCP-Implementation: Integrating Traits, Phylogenies and Distributional Data to Forecast Risks and Resilience of North American Plants
合作研究:BoCP-实施:整合性状、系统发育和分布数据来预测北美植物的风险和恢复力
- 批准号:
2325837 - 财政年份:2024
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Collaborative Research: Integrating Optimal Function and Compliant Mechanisms for Ubiquitous Lower-Limb Powered Prostheses
合作研究:将优化功能和合规机制整合到无处不在的下肢动力假肢中
- 批准号:
2344765 - 财政年份:2024
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Collaborative Research: BoCP-Implementation: Integrating Traits, Phylogenies and Distributional Data to Forecast Risks and Resilience of North American Plants
合作研究:BoCP-实施:整合性状、系统发育和分布数据来预测北美植物的风险和恢复力
- 批准号:
2325838 - 财政年份:2024
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Collaborative Research: Integrating Optimal Function and Compliant Mechanisms for Ubiquitous Lower-Limb Powered Prostheses
合作研究:将优化功能和合规机制整合到无处不在的下肢动力假肢中
- 批准号:
2344766 - 财政年份:2024
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Collaborative Research: BoCP-Implementation: Integrating Traits, Phylogenies and Distributional Data to Forecast Risks and Resilience of North American Plants
合作研究:BoCP-实施:整合性状、系统发育和分布数据来预测北美植物的风险和恢复力
- 批准号:
2325836 - 财政年份:2024
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Collaborative Research: Integrating Nanoparticle Self-assembly into Laser/Powder-based Additive Manufacturing of Multimodal Metallic Materials
合作研究:将纳米粒子自组装集成到多模态金属材料的激光/粉末增材制造中
- 批准号:
2231077 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
III: Medium: Collaborative Research: Integrating Large-Scale Machine Learning and Edge Computing for Collaborative Autonomous Vehicles
III:媒介:协作研究:集成大规模机器学习和边缘计算以实现协作自动驾驶汽车
- 批准号:
2348169 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Continuing Grant