RUI: Relating quantum and classical topology and geometry
RUI:关联量子和经典拓扑和几何
基本信息
- 批准号:1105692
- 负责人:
- 金额:$ 12.48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-06-15 至 2016-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The proposed research focuses on a construction that lies at the core of quantum topology, namely the Kauffman skein algebra of a space. This combinatorial object was first defined with the Jones polynomial in mind and thus plays a central role in the corresponding Witten-Reshetikhin-Turaev topology quantum field theory for 3-manifolds. Later, it was realized in terms of hyperbolic geometry, namely as a quantization of the PSL(2,C)-character variety. However, the relationships between the various interpretations remain somewhat mysterious. By better understanding the algebraic structure of the Kauffman skein algebra, the PI hopes to facilitate further applications of quantum theory to problems in 3-manifold theory and to uncover relationships with existing classical topological invariants. This project also continues the work of Bonahon and the PI to classify representations of the Kauffman bracket skein algebra, an endeavor which combines skein theoretic arguments with the representation theory of the quantum Teichmuller space. From its inception, quantum topology has been a bridge between mathematics and mathematical physics. Topology is an area of mathematics concerned with the intrinsic properties of a space, that is, properties that are preserved under continuous deformations. This is in contrast to geometry, where there is a definite concept of distance between points in the space and deformations are not allowed. Circa 1980, researchers developed a new topological quantum field theory which, as its nomenclature suggests, drew from both quantum physics and topology. This new theory opened up exciting avenues for research, and in particular has allowed many mathematical theorems and constructions to find applications in physics, quantum computation, and beyond. Conjectured deep connections between geometry and quantum theory are too becoming clearer and is a subject of the proposed research. Indeed, the main goal is to strengthen the relationships between these three - quantum theory, topology, and geometry.
所提出的研究集中于量子拓扑学的核心结构,即空间的Kauffman skein代数。这个组合对象的定义首先考虑到了Jones多项式,因此在相应的三维流形的Witten-Reshetikhin-Turaev拓扑量子场论中起着核心作用。后来,它被实现为双曲几何,即作为PSL(2,C)-字符变体的量子化。然而,各种解释之间的关系仍然有些神秘。PI希望通过更好地理解Kauffman skein代数的代数结构,促进量子理论在3-流形理论中的进一步应用,并揭示与现有经典拓扑不变量的关系。这个项目还继续了Bonahon和PI对Kauffman括号Skein代数的表示进行分类的工作,这是一项将Skein理论论点与量子Teichmuller空间的表示理论相结合的努力。量子拓扑学从一开始就是连接数学和数学物理的桥梁。拓扑学是一个与空间的内在性质有关的数学领域,即在连续变形下保持不变的性质。这与几何学形成对比,在几何学中,空间点之间的距离有一个明确的概念,不允许变形。大约在1980年,研究人员发展了一种新的拓扑量子场论,正如它的命名法所暗示的那样,它借鉴了量子物理学和拓扑学。这一新理论为研究开辟了令人兴奋的道路,尤其是允许许多数学定理和构造在物理、量子计算等领域找到应用。几何学和量子理论之间的深层联系也变得越来越清晰,这也是拟议研究的一个主题。事实上,主要目标是加强这三个量子理论、拓扑学和几何学之间的关系。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Helen Wong其他文献
Sa342 FAST SCORE REAL LIFE EXPERIENCE: IMPLICATIONS FOR CLINICAL PRACTICE
- DOI:
10.1016/s0016-5085(21)02701-3 - 发表时间:
2021-05-01 - 期刊:
- 影响因子:
- 作者:
Kartheek Dasari;Minh Trannguyen;Thimmaiah Theethira;Helen Wong;Marina Roytman - 通讯作者:
Marina Roytman
High Performance Silicon Nitride Passive Optical Components on Monolithic Silicon Photonics Platform
单片硅光子平台上的高性能氮化硅无源光学元件
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
S. Chandran;Yusheng Bian;Won Suk Lee;Ahmed Abumazwed;Neng Liu;Luhua Xu;Hanyi Ding;A. Aboketaf;Michal Rakowski;K. Dezfulian;Arman Najafi;T. Hirokawa;Qidi Liu;A. Stricker;S. Krishnamurthy;K. McLean;R. Sporer;Michelle Zhang;Shenghua Song;Helen Wong;Salman Mosleh;D. Deptuck;Janet Tinkler;Jae Gon Lee;Vikas Gupta;A. Yu;K. Giewont;T. Letavic - 通讯作者:
T. Letavic
Salvage surgery for local regrowth following external beam radiotherapy followed by contact X-ray brachytherapy and ‘Watch & wait’ for rectal cancer. Do we compromise the chance of cure?
- DOI:
10.1016/j.ejso.2017.10.145 - 发表时间:
2017-11-01 - 期刊:
- 影响因子:
- 作者:
Arthur Sun Myint;Fraser Smith;Helen Wong;Karen Whitmarsh;Raj Sripadam;Chris Rao;Kate Perkins;Mark Pritchard - 通讯作者:
Mark Pritchard
The First Supra-Regional Contact X-Ray Brachytherapy (Papillon) MDT: An Analysis of Treatment Decisions And Patient Choice
- DOI:
10.1016/j.ejso.2019.09.157 - 发表时间:
2019-11-01 - 期刊:
- 影响因子:
- 作者:
Vicky Fretwell;Helen Wong;Arthur Sun Myint - 通讯作者:
Arthur Sun Myint
The Delivery of Palliative and End-of-Life Care to Adolescents and Young Adults Living with Cancer: A Scoping Review.
向患有癌症的青少年和年轻人提供姑息治疗和临终关怀:范围界定审查。
- DOI:
10.1089/jayao.2023.0013 - 发表时间:
2023 - 期刊:
- 影响因子:2
- 作者:
E. Drake;Lori E Weeks;Michael van Manen;H. Shin;Helen Wong;Dani Taylor;Shelley McKibbon;Janet Curran - 通讯作者:
Janet Curran
Helen Wong的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Helen Wong', 18)}}的其他基金
RUI: Pure and Applied Knot Theory: Skeins, Hyperbolic Volumes, and Biopolymers
RUI:纯结理论和应用结理论:绞纱、双曲体积和生物聚合物
- 批准号:
2305414 - 财政年份:2023
- 资助金额:
$ 12.48万 - 项目类别:
Standard Grant
RUI: Knots in Three-Dimensional Manifolds: Quantum Topology, Hyperbolic Geometry, and Applications
RUI:三维流形中的结:量子拓扑、双曲几何和应用
- 批准号:
1906323 - 财政年份:2019
- 资助金额:
$ 12.48万 - 项目类别:
Standard Grant
相似海外基金
Relating microbial community structure to functioning in soil carbon sequestration and its controlling factors
微生物群落结构与土壤固碳功能及其控制因素的关系
- 批准号:
23K14056 - 财政年份:2023
- 资助金额:
$ 12.48万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Building an understanding of gender-based differences in service use and outcome relating to emergency care for injuries
了解受伤紧急护理相关服务使用和结果中基于性别的差异
- 批准号:
2873108 - 财政年份:2023
- 资助金额:
$ 12.48万 - 项目类别:
Studentship
Development of mass spectrometry methods to investigate conformations and complexes of proteins relating to health and disease.
开发质谱方法来研究与健康和疾病相关的蛋白质的构象和复合物。
- 批准号:
2889424 - 财政年份:2023
- 资助金额:
$ 12.48万 - 项目类别:
Studentship
Relating changes in melt genesis to dynamic conditions of the demise of a continental arc: Antarctic Peninsula arc
将融化成因的变化与大陆弧消亡的动态条件联系起来:南极半岛弧
- 批准号:
2899697 - 财政年份:2023
- 资助金额:
$ 12.48万 - 项目类别:
Studentship
RI:Small: Modeling and Relating Visual Tasks
RI:Small:建模和关联视觉任务
- 批准号:
2329927 - 财政年份:2023
- 资助金额:
$ 12.48万 - 项目类别:
Continuing Grant
Problems in Harmonic Analysis Relating to Curvature
与曲率相关的谐波分析问题
- 批准号:
2246906 - 财政年份:2023
- 资助金额:
$ 12.48万 - 项目类别:
Standard Grant
Exploration of insulocortical neurons relating to memory consolication of orofacial pain
与口面部疼痛记忆巩固相关的岛皮质神经元的探索
- 批准号:
23K18366 - 财政年份:2023
- 资助金额:
$ 12.48万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Elucidation of the mechanisms relating to immunoregulation in oral tumor microenvironment and development of novel treatments
阐明口腔肿瘤微环境中免疫调节相关机制并开发新疗法
- 批准号:
23H03104 - 财政年份:2023
- 资助金额:
$ 12.48万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Relating phthalate and metals exposure during pregnancy and perimenopause to bone health and body composition in midlife
怀孕和围绝经期期间邻苯二甲酸盐和金属暴露与中年骨骼健康和身体成分的关系
- 批准号:
10746972 - 财政年份:2023
- 资助金额:
$ 12.48万 - 项目类别:
Relating leaf cuticular conductance to light reflectance spectra in plants
将植物叶片角质层电导率与光反射光谱联系起来
- 批准号:
574138-2022 - 财政年份:2022
- 资助金额:
$ 12.48万 - 项目类别:
University Undergraduate Student Research Awards














{{item.name}}会员




