Statistical, algebraic and combinatorial structures related to curves on surfaces and three manifolds
与曲面和三个流形上的曲线相关的统计、代数和组合结构
基本信息
- 批准号:1105772
- 负责人:
- 金额:$ 13.14万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-09-01 至 2015-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Oriented closed curves on an orientable surface with boundary are described up to continuous deformation by reduced cyclic words in the generators of the fundamental group and their inverses. By self-intersection number one means the minimum number of transversal self-intersection points of representatives of the class. The PI aims at studying statistics relating self-intersection, geometric length and combinatorial length (number of letters of the word) of deformation classes of curves. The second goal is to deepen the understanding of a relatively new algebraic structure defined on curves on surfaces (the Goldman-Turaev Lie bialgebra) and its relation to existing structures. The third is studying a generalization of the Goldman-Turaev Lie bialgebra, to three manifolds and its relation with intersection structure of submanifolds.A surface is the mathematical representation of the "outer layer of a solid". A curve on a surface, can be thought of as a "rubber band" on the surface. We consider all curves on a given surface, where the rubber band is taut, and associate certain quantities to each curve, related to the length and the number of crossings. One of the mathematical goals of this project consists in studying statistical relations between this quantities. The other mathematical goal of this project will be studying an algebraic structure defined on curves on surface, and a generalization of this structure to three dimensional spaces which are the mathematical representation of solids, like, for instance, a donut or a ball, and also, the space we live in. Surfaces and three manifolds play a crucial role in many branches of mathematics and have applications beyond them - potentially protein folding and cellular arrangements in organisms. The third goal is educational: Since some aspects of this project do not require an extensive knowledge of mathematics, and possible statements can be tested by computer experiments, we will involve undergraduate students in the executions. This will allow them to learn mathematics "from the inside ".
用基本群及其逆的生成元中的约化循环字来描述有边界可定向曲面上的定向闭曲线的连续变形。自相交数1表示该类的代表的横截自相交点的最小数目。PI旨在研究曲线变形类的自相交、几何长度和组合长度(单词的字母数)相关的统计。第二个目标是加深对定义在曲面上的曲线上的相对较新的代数结构(Goldman-Turaev李双代数)及其与现有结构的关系的理解。第三,研究Goldman-Turaev李双代数到三个流形的推广及其与子流形交结构的关系。曲面是“固体外层”的数学表示。曲面上的曲线,可以被认为是曲面上的“橡皮筋”。我们考虑给定曲面上的所有曲线,其中橡皮筋是拉紧的,并将某些量与每条曲线相关联,这些量与交叉点的长度和数量有关。该项目的数学目标之一是研究这些量之间的统计关系。这个项目的另一个数学目标将是研究曲面上的曲线上定义的代数结构,以及将这种结构推广到三维空间,这些空间是固体的数学表示,例如,甜甜圈或球,以及我们生活的空间。 曲面和三流形在数学的许多分支中起着至关重要的作用,并且有着超越它们的应用-潜在的蛋白质折叠和生物体中的细胞排列。第三个目标是教育:由于这个项目的某些方面不需要广泛的数学知识,并且可能的语句可以通过计算机实验进行测试,因此我们将让本科生参与执行。这将使他们能够“从内部”学习数学。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Moira Chas其他文献
The Goldman-Wolpert Lie algebra of undirected curves
无向曲线的 Goldman-Wolpert 李代数
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Moira Chas;Arpan Kabiraj - 通讯作者:
Arpan Kabiraj
An algebraic characterization of simple closed curves on surfaces with boundary
有边界曲面上简单闭曲线的代数表征
- DOI:
10.1142/s1793525310000379 - 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Moira Chas;Fabiana Krongold - 通讯作者:
Fabiana Krongold
Self-intersections in combinatorial topology: statistical structure
组合拓扑中的自交:统计结构
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Moira Chas;S. Lalley - 通讯作者:
S. Lalley
The Lie bracket of undirected curves on a surface.
曲面上无向曲线的李括号。
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Moira Chas;Arpan Kabiraj - 通讯作者:
Arpan Kabiraj
Minimum periods of homeomorphisms of orientable surfaces
- DOI:
- 发表时间:
2012-03 - 期刊:
- 影响因子:0
- 作者:
Moira Chas - 通讯作者:
Moira Chas
Moira Chas的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Moira Chas', 18)}}的其他基金
Closed Curves Probing Surfaces and Three-Manifolds
闭合曲线探测表面和三流形
- 批准号:
1509280 - 财政年份:2015
- 资助金额:
$ 13.14万 - 项目类别:
Standard Grant
FRG: Collaborative Research: How the Algebraic Topology of Closed Manifold Relates to Strings and 2D Quantum Field Theory
FRG:协作研究:闭流形的代数拓扑如何与弦和二维量子场论相关
- 批准号:
0757277 - 财政年份:2008
- 资助金额:
$ 13.14万 - 项目类别:
Continuing Grant
相似国自然基金
Lienard系统的不变代数曲线、可积性与极限环问题研究
- 批准号:12301200
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
对RS和AG码新型软判决代数译码的研究
- 批准号:61671486
- 批准年份:2016
- 资助金额:60.0 万元
- 项目类别:面上项目
同伦和Hodge理论的方法在Algebraic Cycle中的应用
- 批准号:11171234
- 批准年份:2011
- 资助金额:40.0 万元
- 项目类别:面上项目
相似海外基金
Conference: Combinatorial Algebra Meets Algebraic Combinatorics
会议:组合代数遇上代数组合学
- 批准号:
2348525 - 财政年份:2024
- 资助金额:
$ 13.14万 - 项目类别:
Standard Grant
Discovery-Driven Mathematics and Artificial Intelligence for Biosciences and Drug Discovery
用于生物科学和药物发现的发现驱动数学和人工智能
- 批准号:
10551576 - 财政年份:2023
- 资助金额:
$ 13.14万 - 项目类别:
LEAPS-MPS: Algebraic and Combinatorial Methods in Permutation Enumeration
LEAPS-MPS:排列枚举中的代数和组合方法
- 批准号:
2316181 - 财政年份:2023
- 资助金额:
$ 13.14万 - 项目类别:
Standard Grant
Conference: 2023 Combinatorial Algebra meets Algebraic Combinatorics (CAAC)
会议:2023 组合代数遇上代数组合 (CAAC)
- 批准号:
2302019 - 财政年份:2023
- 资助金额:
$ 13.14万 - 项目类别:
Standard Grant
Applications of algebraic methods in combinatorial problems
代数方法在组合问题中的应用
- 批准号:
RGPIN-2020-05481 - 财政年份:2022
- 资助金额:
$ 13.14万 - 项目类别:
Discovery Grants Program - Individual
Problems Arising in Combinatorial Algebraic Geometry
组合代数几何中出现的问题
- 批准号:
573649-2022 - 财政年份:2022
- 资助金额:
$ 13.14万 - 项目类别:
University Undergraduate Student Research Awards
Combinatorial Approaches to Deformation and Degeneration in Algebraic Geometry
代数几何中变形和退化的组合方法
- 批准号:
RGPIN-2021-02956 - 财政年份:2022
- 资助金额:
$ 13.14万 - 项目类别:
Discovery Grants Program - Individual
Combinatorial, Computational, and Applied Algebraic Geometry, Seattle 2022
组合、计算和应用代数几何,西雅图 2022
- 批准号:
2142724 - 财政年份:2022
- 资助金额:
$ 13.14万 - 项目类别:
Standard Grant
Combinatorial Algebraic Geometry for Spectral Theory and Galois Groups
谱论和伽罗瓦群的组合代数几何
- 批准号:
2201005 - 财政年份:2022
- 资助金额:
$ 13.14万 - 项目类别:
Standard Grant
Combinatorial models in algebraic geometry and commutative algebra
代数几何和交换代数中的组合模型
- 批准号:
RGPIN-2021-02391 - 财政年份:2022
- 资助金额:
$ 13.14万 - 项目类别:
Discovery Grants Program - Individual