Closed Curves Probing Surfaces and Three-Manifolds

闭合曲线探测表面和三流形

基本信息

  • 批准号:
    1509280
  • 负责人:
  • 金额:
    $ 17.28万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-06-01 至 2019-05-31
  • 项目状态:
    已结题

项目摘要

Remarkable patterns have been discovered in the structure of closed curves lying on surfaces. The goal of this project is explain as many as possible of these patterns theoretically and to discover further structures. This research combines methods from geometry and topology with probability and statistics. The tools include computer experimentation using algorithms developed by the PI, finding patterns, and then proving rigorous results about the patterns that are discovered. The PI will engage graduate and undergraduate students in research related to the project and she will organize the Stony Brook Women in Mathematics Group. The PI also plans to create a series of applets that can be used by other researchers.The main goal of the project is to understand the asymptotic statistical structure of five numbers that can be associated to the free homotopy class of closed curves on an orientable surface with negative Euler characteristic. Those numerical values are the self-intersection number, the word-length (that is the smallest number of letters of a word representing the curve in a chosen set of generators of the fundamental group of the surface), the geometric length of the unique geodesic, and the mean and the variance of the distribution of mutual intersection numbers with other curves. Another part of the project concerns development of a combinatorial description of the string topology of manifolds in dimension three, and exploring a relationship of string topology with the geometrization of three manifolds.
在曲面上的闭合曲线的结构中发现了一些显著的模式。这个项目的目标是从理论上解释尽可能多的这些模式,并发现更多的结构。本研究将几何学、拓扑学的方法与概率统计学相结合。这些工具包括使用PI开发的算法进行计算机实验,寻找模式,然后证明所发现的模式的严格结果。PI将让研究生和本科生参与与该项目相关的研究,她将组织斯托尼布鲁克妇女数学小组。PI还计划创建一系列可供其他研究人员使用的小程序。该项目的主要目标是了解五个数字的渐近统计结构,这些数字可以与具有负欧拉特征的可定向曲面上的封闭曲线的自由同伦类相关联。这些数值是自相交数,字长(即在曲面基本群的生成元集合中代表曲线的单词的最小字母数),唯一测地线的几何长度,以及与其他曲线的相交数分布的均值和方差。该项目的另一部分涉及开发三维流形的弦拓扑的组合描述,并探索弦拓扑与三维流形几何化的关系。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Moira Chas其他文献

The Goldman-Wolpert Lie algebra of undirected curves
无向曲线的 Goldman-Wolpert 李代数
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Moira Chas;Arpan Kabiraj
  • 通讯作者:
    Arpan Kabiraj
An algebraic characterization of simple closed curves on surfaces with boundary
有边界曲面上简单闭曲线的代数表征
  • DOI:
    10.1142/s1793525310000379
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Moira Chas;Fabiana Krongold
  • 通讯作者:
    Fabiana Krongold
Self-intersections in combinatorial topology: statistical structure
组合拓扑中的自交:统计结构
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Moira Chas;S. Lalley
  • 通讯作者:
    S. Lalley
The Lie bracket of undirected curves on a surface.
曲面上无向曲线的李括号。
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Moira Chas;Arpan Kabiraj
  • 通讯作者:
    Arpan Kabiraj
Minimum periods of homeomorphisms of orientable surfaces
  • DOI:
  • 发表时间:
    2012-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Moira Chas
  • 通讯作者:
    Moira Chas

Moira Chas的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Moira Chas', 18)}}的其他基金

Statistical, algebraic and combinatorial structures related to curves on surfaces and three manifolds
与曲面和三个流形上的曲线相关的统计、代数和组合结构
  • 批准号:
    1105772
  • 财政年份:
    2011
  • 资助金额:
    $ 17.28万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: How the Algebraic Topology of Closed Manifold Relates to Strings and 2D Quantum Field Theory
FRG:协作研究:闭流形的代数拓扑如何与弦和二维量子场论相关
  • 批准号:
    0757277
  • 财政年份:
    2008
  • 资助金额:
    $ 17.28万
  • 项目类别:
    Continuing Grant

相似海外基金

CAREER: Quantifying Genetic and Ecological Constraints on the Evolution of Thermal Performance Curves
职业:量化热性能曲线演变的遗传和生态约束
  • 批准号:
    2337107
  • 财政年份:
    2024
  • 资助金额:
    $ 17.28万
  • 项目类别:
    Continuing Grant
Euler Systems, Iwasawa Theory, and the Arithmetic of Elliptic Curves
欧拉系统、岩泽理论和椭圆曲线算术
  • 批准号:
    2401321
  • 财政年份:
    2024
  • 资助金额:
    $ 17.28万
  • 项目类别:
    Continuing Grant
CAREER: Accelerating Algorithms for Computing Isogenies and Endomorphisms of Supersingular Elliptic Curves
职业:加速计算超奇异椭圆曲线同构和自同态的算法
  • 批准号:
    2340564
  • 财政年份:
    2024
  • 资助金额:
    $ 17.28万
  • 项目类别:
    Continuing Grant
Combinatorics of Complex Curves and Surfaces
复杂曲线和曲面的组合
  • 批准号:
    2401104
  • 财政年份:
    2024
  • 资助金额:
    $ 17.28万
  • 项目类别:
    Standard Grant
Super Quantum Curves and Super Voros Coefficients
超级量子曲线和超级 Voros 系数
  • 批准号:
    22KJ0715
  • 财政年份:
    2023
  • 资助金额:
    $ 17.28万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Random curves and surfaces with conformal symmetries
具有共形对称性的随机曲线和曲面
  • 批准号:
    2246820
  • 财政年份:
    2023
  • 资助金额:
    $ 17.28万
  • 项目类别:
    Continuing Grant
The embedded topology of projective plane curves and the generalization of splitting invariants
射影平面曲线的嵌入拓扑和分裂不变量的推广
  • 批准号:
    23K03042
  • 财政年份:
    2023
  • 资助金额:
    $ 17.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study on supersingular curves and their moduli spaces via computational algebraic geometry and its applications to cryptography
基于计算代数几何的超奇异曲线及其模空间研究及其在密码学中的应用
  • 批准号:
    23K12949
  • 财政年份:
    2023
  • 资助金额:
    $ 17.28万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Diversified study on Manin's conjecture for rational points/rational curves/motives
马宁有理点/有理曲线/动机猜想的多元化研究
  • 批准号:
    23H01067
  • 财政年份:
    2023
  • 资助金额:
    $ 17.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Conference: 1, 2, 3: Curves, Surfaces, and 3-Manifolds
会议:1,2,3:曲线、曲面和 3-流形
  • 批准号:
    2246832
  • 财政年份:
    2023
  • 资助金额:
    $ 17.28万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了