Problems in Metric Riemannian Geometry
公制黎曼几何问题
基本信息
- 批准号:1106517
- 负责人:
- 金额:$ 12.69万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-08-15 至 2015-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The principal investigator plans to continue his research in Riemannian metric geometry; in particular some basic problems in two area: (1) collapsed Riemannian manifolds with bounded sectional curvature (in absolute value or from below) and (2) rigidity and stability problems in Alexandrov geometry. In his research, mathematics from several disciplines interact, such as metric Riemannian geometry, analysis and partial differential equations, compact transformation group theory and topology. This project is amplified by the fact that among the manifolds of same dimension whose sectional curvature is bounded from between below and whose diameter is bounded above by a constant, all but finitely many are collapsed and are close to some Alexandrov spaces.Mathematics is the foundation of the natural sciences, and differential geometry/ Riemannian geometry are among the most important branches of mathematics. The PI is pursuing solving some basic problems in this field that would have a broad intellectual impact. The PI will continue to actively pursue collaborations with other mathematicians in the United States and abroad and to speak at several national and international meetings a year.
首席研究员计划继续黎曼度量几何的研究;特别是两个领域的一些基本问题:(1)具有有界截面曲率(绝对值或从下)的折叠黎曼流形和(2)亚历山德罗夫几何中的刚性和稳定性问题。在他的研究中,来自多个学科的数学相互作用,例如度量黎曼几何、分析和偏微分方程、紧变换群理论和拓扑。这个项目被放大的事实是,在截面曲率由下界和直径由常数上界的相同维流形中,除了有限的多个流形之外,所有流形都折叠并接近某些亚历山德罗夫空间。数学是自然科学的基础,微分几何/黎曼几何是数学最重要的分支之一。 PI 致力于解决该领域的一些基本问题,这些问题将产生广泛的智力影响。 PI 将继续积极寻求与美国和国外其他数学家的合作,并每年在几次国内和国际会议上发表演讲。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiaochun Rong其他文献
Quantitative volume space form rigidity under lower Ricci curvature bound II
里奇曲率下界 II 下的定量体积空间形式刚度
- DOI:
10.1090/tran/7279 - 发表时间:
2017-11 - 期刊:
- 影响因子:0
- 作者:
Lina Chen;Xiaochun Rong;Shicheng Xu - 通讯作者:
Shicheng Xu
Collapsed manifolds with local Ricci bounded covering geometry
- DOI:
- 发表时间:
2022-11 - 期刊:
- 影响因子:0
- 作者:
Xiaochun Rong - 通讯作者:
Xiaochun Rong
A Bochner theorem and applications
- DOI:
10.1215/s0012-7094-98-09116-5 - 发表时间:
1998-02 - 期刊:
- 影响因子:2.5
- 作者:
Xiaochun Rong - 通讯作者:
Xiaochun Rong
Rationality of geometric signatures of complete 4-manifolds
- DOI:
10.1007/bf01241141 - 发表时间:
1995-12 - 期刊:
- 影响因子:3.1
- 作者:
Xiaochun Rong - 通讯作者:
Xiaochun Rong
Collapsed Manifolds with Bounded Sectional Curvature and Applications
- DOI:
10.4310/sdg.2006.v11.n1.a2 - 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
Xiaochun Rong - 通讯作者:
Xiaochun Rong
Xiaochun Rong的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiaochun Rong', 18)}}的其他基金
Some Problems in Riemannian Geometry
黎曼几何中的一些问题
- 批准号:
0805928 - 财政年份:2008
- 资助金额:
$ 12.69万 - 项目类别:
Standard Grant
Positively and Non-Positively Curved Manifolds
正曲流形和非正曲流形
- 批准号:
0504534 - 财政年份:2005
- 资助金额:
$ 12.69万 - 项目类别:
Standard Grant
Some Problems in Curvature and Topology
曲率和拓扑的一些问题
- 批准号:
0203164 - 财政年份:2002
- 资助金额:
$ 12.69万 - 项目类别:
Continuing Grant
Collapsed Riemannian Manifolds and Applications
塌缩黎曼流形及其应用
- 批准号:
9971360 - 财政年份:1999
- 资助金额:
$ 12.69万 - 项目类别:
Standard Grant
Mathematical Sciences: Collapsed Riemannian Manifolds and Applications
数学科学:塌缩黎曼流形及其应用
- 批准号:
9896134 - 财政年份:1996
- 资助金额:
$ 12.69万 - 项目类别:
Standard Grant
Mathematical Sciences: Collapsed Riemannian Manifolds and Applications
数学科学:塌缩黎曼流形及其应用
- 批准号:
9626252 - 财政年份:1996
- 资助金额:
$ 12.69万 - 项目类别:
Standard Grant
相似海外基金
CAREER: Rank Metric Codes from Drinfeld Modules and New Primitives in Code Based Cryptography
职业:对来自 Drinfeld 模块的度量代码和基于代码的密码学中的新原语进行排名
- 批准号:
2338424 - 财政年份:2024
- 资助金额:
$ 12.69万 - 项目类别:
Continuing Grant
A systemic environmental impact metric for companies and investors
公司和投资者的系统性环境影响指标
- 批准号:
DP230101280 - 财政年份:2024
- 资助金额:
$ 12.69万 - 项目类别:
Discovery Projects
Room-temperature flexible manipulation of the quantum-metric structure in topological chiral antiferromagnets
拓扑手性反铁磁体中量子度量结构的室温灵活操控
- 批准号:
24K16999 - 财政年份:2024
- 资助金额:
$ 12.69万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
MRI: Track 3 Acquisition of a Helium Liquefaction and Recovery System for METRIC NMR Laboratories at NC State
MRI:轨道 3 为北卡罗来纳州 METRIC NMR 实验室采购氦液化和回收系统
- 批准号:
2320092 - 财政年份:2023
- 资助金额:
$ 12.69万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: Graph Analysis: Integrating Metric and Topological Perspectives
合作研究:AF:小:图分析:整合度量和拓扑视角
- 批准号:
2310412 - 财政年份:2023
- 资助金额:
$ 12.69万 - 项目类别:
Standard Grant
Statistical Models and Methods for Complex Data in Metric Spaces
度量空间中复杂数据的统计模型和方法
- 批准号:
2310450 - 财政年份:2023
- 资助金额:
$ 12.69万 - 项目类别:
Standard Grant
EAGER: Secure Research Impact Metric Data Exchange: Data Supply Chain and Vocabulary Development
EAGER:安全研究影响指标数据交换:数据供应链和词汇开发
- 批准号:
2335827 - 财政年份:2023
- 资助金额:
$ 12.69万 - 项目类别:
Standard Grant
Some topics in Analysis and Probability in Metric Measure Spaces, Random Matrices, and Diffusions
度量测度空间、随机矩阵和扩散中的分析和概率中的一些主题
- 批准号:
2247117 - 财政年份:2023
- 资助金额:
$ 12.69万 - 项目类别:
Standard Grant
Geometric flows and analysis on metric spaces
几何流和度量空间分析
- 批准号:
2305397 - 财政年份:2023
- 资助金额:
$ 12.69万 - 项目类别:
Standard Grant
Modeling Complex Functional Data and Random Objects in Metric Spaces
在度量空间中对复杂函数数据和随机对象进行建模
- 批准号:
2311035 - 财政年份:2023
- 资助金额:
$ 12.69万 - 项目类别:
Continuing Grant














{{item.name}}会员




